Ύλη:
Εισαγωγή : Προέλευση χρησιμότητα, Μαθηματικά μοντέλα, έννοια και ταξινόμηση διαφορικών εξισώσεων, η έννοια της λύσης, προβλήματα αρχικών-συνοριακών τιμών, καλά τοποθετημένα προβλήματα.
Διαφορικές εξισώσεις πρώτης τάξης : Γραμμικές, Xωριζομένων μεταβλητών, Ακριβείς και με ολοκληρώνοντες παράγοντες, Ομογενείς, Θεώρημα ύπαρξης και μοναδικότητας, Μοντελοποίηση φυσικών προβλημάτων
Γραμμικές διαφορικές : Γενική θεωρία ομογενών, Γραμμική ανεξαρτησία συναρτήσεων ή λύσεων και ορίζουσα Wronski, Το θεώρημα του Abel, Υποβιβασμός τάξης-μέθοδος d΄Alembert, Μη ομογενείς διαφορικές εξισώσεις, μέθοδος μεταβολής των παραμέτρων-μέθοδος Lagrange, Εξισώσεις με σταθερούς συντελεστές, Χαρακτηριστικό πολυώνυμο-απλές, πολλαπλές, μιγαδικές ρίζες, Μέθοδος προσδιοριστέων συντελεστών.
Μετασχηματισμός Laplace : Ορισμός. Επίλυση προβλημάτων αρχικών τιμών. Οι συναρτήσεις Heaviside και Dirac, Εξισώσεις με ασυνεχή μη ομογενή όρο. Θεώρημα της συνέλιξης. Εξισώσεις τύπου Volterra.
Συστήματα διαφορικών εξισώσεων πρώτης τάξης : Ομογενή γραμμικά με σταθερούς συντελεστές, Μιγαδικές, Πολλαπλές ιδιοτιμές, το επίπεδο φάσεων, Αυτόνομα συστήματα και ευστάθεια, Μη ομογενή γραμμικά συστήματα.
Επίλυση Γραμμικών Δεύτερης Τάξης με τη Μέθοδο των Δυναμοσειρών : Λύσεις σε περιοχή ομαλού σημείου, Εξίσωση Legendre, Πολυώνυμα Legendre, Η εξίσωση Euler, Λύσεις σε περιοχή κανονικού ιδιάζοντος σημείου, Η εξίσωση Bessel.
Τριγωνομετρικές Σειρές Fourier : Συντελεστές Fourier-Euler, Θεώρημα σύγκλισης, Άρτιες, περιττές συναρτήσεις- συνημιτονικά, ημιτονικά αναπτύγματα, Μιγαδική μορφή σειρών Fourier.
Προβλήματα Συνοριακών Τιμών : Ομογενή προβλήματα Sturm-Liouville, ιδιοτιμές και ιδιολύσεις
Χωρισμός μεταβλητών : Η κυματική εξίσωση – ταλαντώσεις ελαστικής χορδής. Η λύση D’Alebert. Η μέθοδος χωρισμού μεταβλητών σε δύο και τρεις διαστάσεις Προτυποποίηση φυσικών προβλημάτων.