| Question 6 | Estimate an approximate value of uniformily distributed loading, w in | |------------|---| | | kN/m², for the following types of loading: | 40 m/s wind $w = \dots kN/m^2$ Office live loading $w = \dots kN/m^2$ Highway, HA loading : w =kN/m² ## <u>Ouestion</u> 7 <u>Estimate</u> an approximate value for the <u>working load</u> (SLS) stress in compression, fc, (fully restrained against buckling) for the following materials: Grade 40 (fcu = 40 N/mm²) concrete : $fc =N/mm^2$ Grade 43 (fy = 250 N/mm^2) mild steel : fc =N/mm² Strength class 4 (SC4 or SS grade) timber : $fc =N/mm^2$ 3.5 N/mm², 100mm thick blockwork with : $fc =N/mm^2$ grade iii) mortar ## Question 8 For the following, constant inertia, cantilever, <u>calculate</u> the tip deflection: EI = 90,000 kNm² Tip deflection =mm ## Question 9 For the following parabolic arch, calculate the midspan thrust in the arch: Midspan thrust =kN ## Ouestion 10 Calculate the minimum radius of gyration, r_{min} for the following steel section: <u>Sketch</u> the shape of the allowable axial stress with respect to slenderness ratio(ℓ/r_{min}), allowing for material yield: Allowable A stress