Question 6	Estimate an approximate value of uniformily distributed loading, w in
	kN/m², for the following types of loading:

40 m/s wind

 $w = \dots kN/m^2$

Office live loading

 $w = \dots kN/m^2$

Highway, HA loading

: w =kN/m²

<u>Ouestion</u> 7 <u>Estimate</u> an approximate value for the <u>working load</u> (SLS) stress in compression, fc, (fully restrained against buckling) for the following materials:

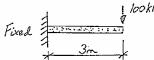
Grade 40 (fcu = 40 N/mm²) concrete

: $fc =N/mm^2$

Grade 43 (fy = 250 N/mm^2) mild steel

: fc =N/mm²

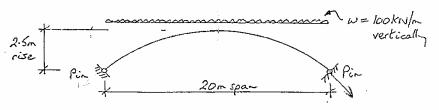
Strength class 4 (SC4 or SS grade) timber


: $fc =N/mm^2$

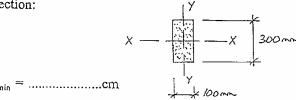
3.5 N/mm², 100mm thick blockwork with

: $fc =N/mm^2$

grade iii) mortar


Question 8 For the following, constant inertia, cantilever, <u>calculate</u> the tip deflection:

EI = 90,000 kNm²


Tip deflection =mm

Question 9 For the following parabolic arch, calculate the midspan thrust in the arch:

Midspan thrust =kN

Ouestion 10 Calculate the minimum radius of gyration, r_{min} for the following steel section:

<u>Sketch</u> the shape of the allowable axial stress with respect to slenderness ratio(ℓ/r_{min}), allowing for material yield:

Allowable A stress