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6. WAVE SPEED AND LENGTH COMPUTATIONS W.W. Massie

6.1. Introduction

A A

For intermediate water depths (—9- < 3 < —90, there i1s no
20 4

simple, direct means of determining the wave length or other related
parameters given only the wave period. Two methods are presented
here, both are derived from the non-1inear equation for wave speed,
equation 5.05.

6.2. Iteration Method

#_——-—-—__-_

Recall equation 5.05,

- = 9 tanh kh = s
K T (5.05) (6.01)

in which ¢ is the wave phase velocity
g is the acceleration of gravity

k is the wave number =-21
A

h is the water depth
A is the wave length
T is the wave period.

Substituting various definitions from chapter 5 into equation 6.01

yields:

2mh
A

(6.02)

o= Ao tanh

Since X , the unknown, cannot be isolated on one side of this equation,
a direct solution is impossible. Iterative solution schemes are pPOS-
sible. In fact most any iteration will eventually lead to the correct

answer since the equation has only one solution for given values of
A _and h.
0

One simple but rather inefficient iteration is to resubstitute
successive answers from 6.02 (starting with A =;A0) into the right
hand side of the equation. Thus:

§ = X, tanh emh (6.03)

where i = 0, 1, 2, «ssess

A much more efficient iteration is the fol lowing:
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While the algorithm is a bit more complex, it reduces the number
of iterations considerably (three or four are usually more than

sufficient) and can still be executed on many of the small pocket
electronic calculators.

A direct technique attributed to Eckert (unpublished) which
usually gives answers correct to within about 5 percent is simply:

I ’cu.emhaglh | (6.05)
v J A
0

Table 6.1 compares the results of these schemes.

Table 6.1. Wave length iterations

I = 19 seconds, h = 50 meters

egn. 6.03 eqn. 6.04

i A (m) A : 49 (m)

0 563.8 3781

1 285.2 382.0

2 451.6 381.6

3 339.2 381.6

4 410.9

3 362.9

6 394.2

/ 373 .4

8 387.0

9 378.0

10 384.0

11 380.1

12 382.6

13 380.9

14 382.0

15 Joi.d

16 381.8

17 381.5
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The superiority of the second iteration scheme is obvious.
For comparison purposes, equation 6.05 yields A = 401.0 which

is off by 5.1%.

Obviously, now that the wave length has been determined all of
the other related parameters can be easily evaluated.

6.3. Use of Tables

The computations outlined in the previous section were often
cumbersome to carry out by hand. For this reason an alternative was
developed in the form of a set of tables. By dividing both sides of
equation 6.02 into h and doing a bit of algebra:

LR (6.06)
)\O A A

in which x has been conveniently expressed in terms of D. Thus,
| Ao )\
; by choosing various values of D-, corresponding values of D—-can
A A
0

be computed directly and tabulated. Interpolation 1in this table
| working either toward values of h or toward values of b-is

)«0 A

all that is necessary to determine the wave length.

Wiegel (1954) worked out such a table. It is also published in
. his book Oceanographical Engineering (1964) and in the Shore Protec-
| tion Manual (1973). An abbreviated version of this table is included

here as table 6.2.

~ As an example, the previous iteration schemes can be checked.

; T =19 sec. and h = 50 m yields A_ = 563.80 m, and h . o.0887.

i "o

| Interpolating in Wiegel (1964) yields n . 0.1310 and » = 381.6
A

which compares rather favorably to the earlier calculation.
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