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Numerical Solution of 
Boundary Value Problems

Weighted Residual Methods
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Objectives

• In this section we will be introduced to the 
general classification of approximate 
methods

• Special attention will be paid for the 
weighted residual method

• Derivation of a system of linear equations 
to approximate the solution of an ODE will 
be presented using different techniques
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Classification of Approximate 
Solutions of D.E.’s

• Discrete Coordinate Method
– Finite difference Methods
– Stepwise integration methods

• Euler method
• Runge-Kutta methods
• Etc…

• Distributed Coordinate Method
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Distributed Coordinate Methods
• Weighted Residual Methods

– Interior Residual
• Collocation
• Galrekin
• Finite Element

– Boundary Residual
• Boundary Element Method

• Stationary Functional Methods
– Reyligh-Ritz methods
– Finite Element method
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Basic Concepts
• A linear differential equation may be written in the form:

( )( ) ( )xgxfL =

• Where L(.) is a linear differential operator.
• An approximate solution maybe of the form:
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Basic Concepts
• Applying the differential operator on the approximate 

solution, you get:
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Handling the Residue

• The weighted residual methods are all 
based on minimizing the value of the 
residue.

• Since the residue can not be zero over the 
whole domain, different techniques were 
introduced.
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General Weighted Residual 
Method
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Objective of WRM

• As any other numerical method, the 
objective is to obtain of algebraic 
equations, that, when solved, produce a 
result with an acceptable accuracy.

• If we are seeking the values of ai that 
would reduce the Residue (R(x)) allover 
the domain, we may integrate the residue 
over the domain and evaluate it!
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Evaluating the Residue
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Using Weighting Functions

• If you can select n different weighting 
functions, you will produce n equations!

• You will end up with n equations in n 
variables.
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Collocation Method

• The idea behind the collocation method is 
similar to that behind the buttons of your 
shirt!

• Assume a solution, then force the residue 
to be zero at the collocation points
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Collocation Method
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Example Problem
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The bar tensile problem
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Bar application
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In Matrix Form
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Solve the above system for the “generalized 
coordinates” ai to get the solution for u(x)
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Notes on the trial functions

• They should be at least twice 
differentiable!

• They should satisfy all boundary 
conditions!

• Those are called the “Admissibility 
Conditions”.
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Using Admissible Functions 

• For a constant forcing function, F(x)=f
• The strain at the free end of the bar should 

be zero (slope of displacement is zero). 
We may use: ( ) ⎟
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Using the function into the DE:

• Since we only have one term in the series, 
we will select one collocation point!

• The midpoint is a reasonable choice!
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Solving:

• Then, the approximate 
solution for this problem is:

• Which gives the maximum 
displacement to be:

• And maximum strain to be:

( ) ( ) EA
fl

EA
fl

SinlEA
fa

2

2

2

21 57.024
42

≈==
πππ

( ) ⎟
⎠
⎞

⎜
⎝
⎛≈

l
xSin

EA
flxu

2
57.0

2 π

( ) ( )5.057.0
2

=≈ exact
EA

fllu

( ) ( )0.19.00 =≈ exact
EA
lfux

ENME 602 Spring 2007
Dr. Eng. Mohammad Tawfik

Homework #11
• Solve the beam bending 

problem, for beam 
displacement, for a 
simply supported beam 
with a load placed at the 
center of the beam using
– Any weighting function
– Collocation Method

• Use three term Sin series 
that satisfies all BC’s

• Write a program that 
produces the results for 
n-term solution.
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Exact Solution
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