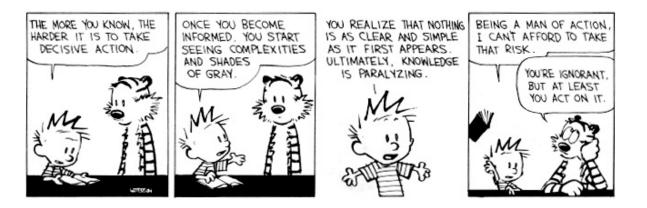
Homework 12. Chapters 13, 14, 14, 15. Moments, torques, and static equilibrium



12.1 Concepts: Define and draw the moment of a force

Write the *definition* for the moment of force \mathbf{F}^Q applied to point Q about point O. Include a *sketch* with *each* part of your definition clearly labeled. **Result:**

12.2 Governing equations for static equilibrium

What **two** vector equations are used for determining **static equilibrium** of a system S?

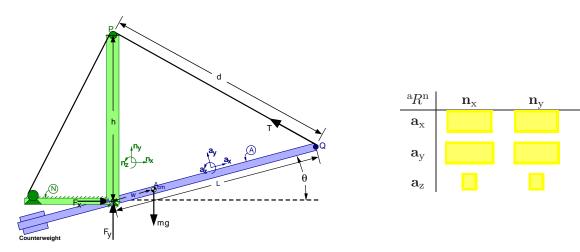
12.3 Static equilibrium of a draw-bridge.

The following figure shows a draw-bridge whose platform A (A includes the bridge's road-way and counterweight) is supported by a frictionless revolute joint at point A_o and a light (massless) cable attached to point Q (the distal end of the platform). The cable runs over a pulley at point P and into a winch that is connected to ground N.

Right-handed sets of mutually perpendicular unit vectors \mathbf{n}_i and \mathbf{a}_i (*i*=x, y, z) are fixed in N and A, respectively, with \mathbf{n}_x horizontally rights, \mathbf{n}_y vertically upward, \mathbf{a}_x directed from A_o to Q, and $\mathbf{n}_z = \mathbf{a}_z$ parallel to the revolute joint axis.

The following identifiers are useful in this analysis

Quantity	Identifier	Type
Distance between A_o and A_{cm}	w	constant
Distance between A_o and Q	L	constant
Distance between A_o and P	h	constant
Mass of A (includes roadway and counterweight)	m	constant
Local gravitational constant	g	constant
Angle between \mathbf{n}_{x} and \mathbf{a}_{x}	θ	specified
Distance between P and Q	d	variable
Tension in cable	Т	variable
$\mathbf{n}_{\mathbf{x}}$ measure of reaction force on A at A_o	F_x	variable
\mathbf{n}_{y} measure of reaction force on A at A_{o}	F_y	variable



- (a) Complete the previous ${}^{a}R^{n}$ rotation table in terms of θ .
- (b) Express $\mathbf{r}^{P/Q}$ (*P*'s position vector from *Q*) as efficiently as possible. **Result:** $\mathbf{r}^{P/Q} = \mathbf{n}_{\mathbf{v}} + \mathbf{n}_{\mathbf{v}} \mathbf{a}_{\mathbf{x}}$
- (c) Form an expression for the distance d between P and Q in terms of h, L, and θ. Result:

$$d =$$

(d) Verify the unit vector **u** directed from Q to P can be expressed in terms of L, d, h, and the unit vectors \mathbf{a}_x , \mathbf{a}_y , \mathbf{a}_z and \mathbf{n}_x , \mathbf{n}_y , \mathbf{n}_z as shown below.

$$\mathbf{u} = \frac{-L}{d} \mathbf{a}_{\mathrm{x}} + \frac{h}{d} \mathbf{n}_{\mathrm{y}}$$

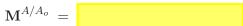
(e) Form F^A, the resultant of all contact and distance forces on the road-way A. Result:

$$\mathbf{F}^A =$$

(f) Knowing the draw-bridge's platform is in **static equilibrium**, solve for F_x and F_y in terms of T, m, g, h, L, d, and θ .

Result:

(g) Find the moment of all forces on A about A_o . **Result:**



(h) Knowing the draw-bridge's platform is in static equilibrium, solve for T in terms of m, g, w, d, h, and L.
Result:

- (i) The maximum tension in the cable occurs when $\theta = []^{\circ}$.
- (j) The cable tension is **nonlinear** in (circle all applicable quantities)

w L h m g d heta

 \mathbf{n}_{z}

- (k) Many draw-bridges have a counterweight because:
 - Physical explanation:

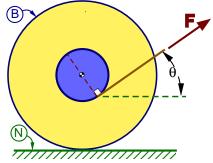
Mathematical explanation:

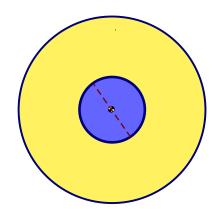
12.4 Static analysis of a wheel (Motivated by an old-fashioned penny farthing bicycle).

The figure to the right shows a force that pulls on a rope wrapped around the axle of a rigid wheel that is in contact with a **rough** flat horizontal plane N. The axle and wheel are rigidly connected and constitute a rigid body B.

Complete *B*'s free-body diagram (below right). In the following table, **fully describe** any force measures that you introduce in your diagram. To facilitate your analysis, introduce helpful unit vectors, rotation matrices, points, etc.

Description of scalar quantities	Symbol
Local gravitational constant	g
Mass of B	m
Coefficient of static friction between B and N	μ_s
Radius of B 's axle	r_A
Radius of B 's wheel	r_W
Angle of the rope from the horizontal	θ
Measure of the force pulling on the rope	F_T
Complete description of additional force measures	Symbol





Assuming there is sufficient friction to prevent the wheel's sliding on N, calculate the angle θ_{static} (in terms of r_A and r_W) for B to be in **static equilibrium**.

Result:

$$heta_{static} =$$

When $0^{\circ} \leq \theta < \theta_{static}$, the wheel rolls **left/right**. When $\theta_{static} < \theta \leq 90^{\circ}$, the wheel rolls **left/right**.

Calculate the minimum μ_s for B to be in **static equilibrium** in terms of m, g, F, and θ . **Result:**

$$\mu_{s_{\min mum}} =$$

12.5 Bureau drawers with static friction.

The figure to the right shows a rigid bureau B in contact with a **rough** flat horizontal surface N at points O and Q of B.

The bureau has a mass m and its center of mass is elevated a distance e from the midpoint of O and Q (the midpoint is a distance L from both O and Q).

A person (not shown) is pushing the bureau horizontally right with a force of magnitude F^P applied to a point P of B that is located a height h above O.

The intent of this question is to investigate the role of static friction on the sliding and tipping of a bureau.

L

h

Answer the following questions in terms of h, L, d, m, g (the local gravitational acceleration), and μ_s (the coefficient of static friction between B and N).

• **Before doing any analysis**, use your intuition (guess) whether or not the **start** of the bureau tipping depends on (circle all that apply).

$$l$$
 m

• One way for the bureau to start tipping is for it to lose contact with N at point O. Mathematically, this means the normal and friction forces at O are **0**. (N can push upward on B but cannot pull downward on B). In view of these facts, determine the minimum positive value of F^P to tip B. **Result:**

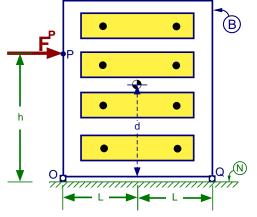
$$F^P_{minimum} =$$

• Determine h_{tip} , the minimum height where a sufficiently strong push makes the bureau **start** to tip rather than slide. Result:

$$h_{tip} =$$

- When $\mu_s \approx 0$, h_{tip} is much smaller/smaller/equal to/larger/much larger than L.
- In view of your static analysis, the **start** of the bureau tipping depends on (circle all that apply)

h L d m g μ_s



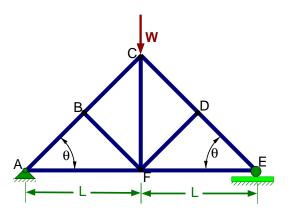
 μ_s

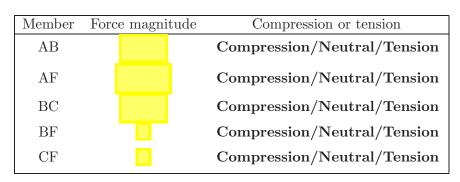
g

12.6 Static analysis of a truss with roof load

The figure to the right is a *planar truss* of *two-force members* that is in **static equilibrium** and is attached to ground at point A by a pin-joint and point E by a pinroller joint.

Complete the 2^{nd} column of the following table showing the magnitude of the force in each member as a function of L, θ and W (assume a positive value of W). In the 3^{rd} column, decide whether each member is in **compression** (forces on the member try to shorten it) or **tension** (forces on the member try to elongate it).



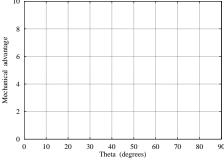


• Consider a range of values for θ between 0° and 90°. The minimum load in member AB occurs when $\theta =$. The maximum load in member AB occurs when $\theta =$.

Increasing θ causes the load in member AB to **decrease/increase**.

• Machines can greatly magnify small forces. For example, a trusslike machine can be designed so that members BC and DC compress (pinch) an object at node C in the **horizontal** direction, each with a force of magnitude R. Determine a mathematical expression for the *mechanical advantage* of this truss-like machine (defined below) and plot it for $0^{\circ} < \theta < 90^{\circ}$.

Mechanical advantage
$$\stackrel{\Delta}{=} \frac{R}{W} =$$



• Members BF and DF carry no load. Why might an engineering add these members?

Euler's *critical buckling load* F_{buckling} for a long simply-supported column under an axial compressive force is

$$F_{\text{buckling}} = \frac{c}{L_{\text{column}}^2}$$

where $L_{\rm column}$ is the length of the column (member) and c is a constant that depends on the column's elastic modulus and area moment of inertia. Determine the value of θ (in degrees) that supports the maximum load W.

Result:

