
1 Lecture 17. Instability and Buckling

1.1 Introduction

The structural instability, or stability loss, is listed in Lecture 14 as one of the possible
failure modes characterizing a civil structure. By contrast with the material failure,
extensively studied in the previous lectures, which is predicted using the equations of
motion written on the initial, undeformed con�guration, the prediction of the instability
requires the equation of motion to be formulated on the deformed con�guration of the
structure. Consequently, it can be concluded that the structural instability is primarily
due to geometry of the deformation. Since the deformed con�guration is not known
in advanced, obtaining a solution of the equations of motion is not a trivial task and
frequently encounter mathematical di¢ culties. The generality of the motion equations are
often reduced in the engineering practice to static equilibrium equations, by accepting the
quasi-static nature of the loading and considering a slow application. Altrue, the dynamic
method provides a general de�nition of the instability phenomenon, the static method, a
more simpler method, is able to correctly obtain results for the case of conservative forces.
Mane of the static loads considered in the structural investigations are of this nature. The
classical theory of structural stability refers to the investigation of the elastic buckling of
columns and frames, an extremely important subject for any structural practitioner. The
inelastic behavior, in the classical sense, extends the elastic behavior of the material over
the proportionality limit, complicating somehow the theoretical approach. Over the years
the stability study developed in mane directions covering not only columns and frames,
but all sorts of structural components as: plates, shells and three-dimensional bodies. The
material behavior considered addressed also more complicated, but more closely related
to reality, constitutive laws as: viscoelastic, visco-elasto-plastic and recently the theory
of damage.

The subjects treated in this lecture, intend to familiarize the novice student of Mechanics
of Materials with the instability phenomenon (de�nition, assumptions, limitations), by
insisting �rst on the elastic behavior of the column and later commenting on its inelastic
behavior. If someone is interesting to extend his/hers knowledge base to the instability
of more complicated material behavior or structural geometry, a very extensive technical
literature is available in English and Roumanian languages. Some of these remarkable
textbooks and handbooks are listed in the reference section of this testbook.

1.2 Stability of Equilibrium. De�nition.

The study of the deformable body, in general, and of the linear beam, in particular,
required always the equilibrium and function of the aborted subject some form of equilib-
rium equations are written (global equilibrium, part equilibrium, in�nitesimal equilibrium
etc.). A new concept related with the equilibrium, the stability of equilibrium, is intro-
duced by analyzing the equilibrium of a rigid sphere,as pictured in Figure 17.1, on three
di¤erent surfaces.
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Figure 17.1 Stability of Equilibrium

In all three con�gurations (a), (b) and (c), the sphere is in equilibrium and consequently,
the equilibrium equations are satis�ed:

X
Fx = 0 (1)X
Fy = W +N = 0 (2)X
M = 0 (3)

Despite the fact that the equilibrium is satis�ed the stability of the equilibrium is dif-
ferent in all three con�gurations illustrated. In the con�guration (a) any change of the
sphere position in the neighborhood of the original position will be only temporary and
the sphere will move back regaining the original position. This con�guration is called
stable equilibrium. Contrary, the con�guration (c) is called unstable equilibrium and is
characterized by a movement of the sphere away from its initial position. The con�gura-
tion (b) is called neutral equilibrium, because the sphere has not any tendency to move
from or toward its initial position.

The general de�nition of stability, due to the theoretical contribution of Lyapunov in
1892, is stated as:"a system is stable if a small change in its input leads to a small change
in the response of the output". Translated in terms more appropiated for the structural
engineering a structure is stable if a �nite change in the initial conditions (input) does
not produced an in�nite change in the solution (response). Otherwise, the structure is
unstable. Mathematically, the de�nition stated above is expressed as:

De�nition 1 If for an arbitrary positive number � there exists a positive number � such
that every solution v(t);obtained from the integration of the equation of motion, with
initial value v(t = t0) � � satis�es the inequalities v(t) � " for all times t > t0:

The static equilibrium being a particular case of the equation of motion, the time variable
t looses its meaning and consequently, the condition of stability refers exclusively to the
position of the equilibrium, as exemplify in the cases illustrated in Figure 17.1.
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1.3 Buckling and Stability of Simple Systems

In the attempt to extend the fundamental concept of the stability equilibrium to more
complicated systems, the simple system illustrated in Figure 17.2, containing some elastic
components, is considered. This mechanical system is comprised of two members: (a) a
rigid member AB and (b) a linear elastic rotational spring. The elastic rotational spring
is attached at end A of the rigid member and is characterized by a constant rigidity k�.
The entier system is subjected to a vertical compressive force P acting at end B of the
rigid member, along the longitudinal axis x; and is assumed to conserve its orientation.

Considering as initial equilibrium con�guration the vertical position of the rigid member
AB; as shown in Figure 17.2.a, the possible con�gurations of the equilibrium stability
are studied. The initial equilibrium con�guration of the system is disturbed by laterally
displacing the end B of the rigid member AB. A new equilibrium con�guration is found
as shown in Figure 17.2.b.

Figure 17.2 Column Buckling - Simple Example

The free-body diagram corresponding to the new equilibrium con�guration is pictured in
Figure 17.2.c. The equilibrium equations are:

X
Fx = 0! �P + VA = 0! VA = P (4)X
Fy = 0! HA = 0X

A

M = 0! �P � l � sin � +MA = 0

The behavior of the linear elastic rotational spring during the deformation from the initial
equilibrium con�guration is characterized by the following relation:

MA = k� � � (5)

Substituting equation (5) into the third equation of the equilibrium equations (4), this
equation is recast as:

�P � l � sin � + k� � � = 0 (6)
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Consequently, the value of the load P;called critical load Pcr, required for the equilibrium
expressed by equation (6) to exists, is calculated:

P = Pcr =
k� � �
l � sin � (7)

Conclusion 2 The critical load Pcr depends on the variation of the rotation angle �:

Developing in power series the expression (7) and holding only the �rst three terms
di¤erent than zero, the following approximation of the critical load Pcr is obtained:

Pcr '
1

l
k� +

1

6l
�2k� +

7

360l
�4k� (8)

Since the initial equilibrium con�guration, the vertical con�guration, is represented by
� = 0; the stability of the equilibrium is verify in the neighborhood of this equilibrium
con�guration and consequently, the critical load Pcr has a constant value:

Pcr = P
0
cr =

k�
l
= constant (9)

By analogy with the equilibrium con�gurations of the sphere illustrated in Figure 17.1,
the following equilibrium con�gurations are possible in the case of the simple mechanical
system:

if

8<:
P < P 0cr
P = P 0cr
P > P 0cr

9=; !
stable equilibrium
neutral equilibrium
unstable equilibrium

(10)

Similar conclusions are obtained if successive equilibrium con�gurations obtained varying
the rotation angle � are considered. The equation (10) can then be generalized for any
rotation angle �:

if

8<:
P < Pcr(�)
P = Pcr(�)
P > Pcr(�)

9=; !
stable equilibrium
neutral equilibrium
unstable equilibrium

(11)

A suggestive graphical representation of the equilibrium stability, called the equilibrium
diagram, is employed. The plot represents the relation between the variation of the com-
pressive load P and the lateral de�ection of the system, represented in this case by the
rotation angle �. The equilibrium diagram is illustrated in Figure 17.3.
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Figure 17.3 Equilibrium Diagram - Simple Example

Conclusion 3 (a) All three equilibrium con�gurations discussed above (stable, neutral
and unstable) are easily identi�ed in the equilibrium diagram. All tendencies of the system
to move are indicated on Figure 7.3 with directional arrows;

(b) As long as P < Pcr the equilibrium is stable and the system tends to return to its
initial equilibrium position, the vertical position, described by � = 0;

(c) The neutral equilibrium is marked by the bifurcation point B and corresponds to
P = P 0cr;

(d):New equilibrium con�gurations are found along the curves BC and BC 0; constructed
using the exact expression (7) of the critical load Pcr;

(e). For values of the compressive force P > Pcr any small lateral displacement will make
the system unstable;

(f) The values of the critical load Pcr(�) represents the frontier delineating the stable and
unstable equilibrium con�gurations.

In the technical literature the loss of stability and the critical load Pcr are also called
buckling and buckling load, respectively. For structural engineering the value of the �rst
critical load P 0cr, corresponding to the �rst equilibrium con�guration, is always important.

1.4 Buckling of Elastic Columns

By de�nition, in the American technical literature, a linear structural member located
in a vertical position and loaded by a compressive axial force is called column. By
its important structural role played in any civil structure, the behavior of the column
subjected to a compressive force is an issue of importance. In this section problems
related to the elastic buckling of the ideal linear column are presented and discussed.
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1.4.1 The Ideal Pin-Ended Column. Euler Buckling Load.

The knowledge accumulated from the analysis of the rigid column shown in Figure 17.2
is extended to the study of the stability of the elastic columns. This study begins with
the classical example of the ideal pin-ended linear column illustrated in Figure 17.4. This
type of column is referred, in the technical literature, as the Ideal Euler Column.

Figure 17.4 Ideal Pin-Ended Column

The column OA; a perfect straight beam developed without any imperfections along the
x coordinate axis, is made of a homogeneous linearly elastic material (follows the Hook�s
constitutive law) and freely rotates at both ends, O and A; without friction. The axis x is
passing through the centroids of constant cross-section of the column OA. Additionally,
the cross-section is assumed to be symmetrical about the vertical plane xy of the column.
The compressive force P is transferred to the column at end A through a sliding rigid
bloc.

Conclusion 4 Restricting the cross-section of the column to be constant and symmetrical
about xy plane implies that the lateral deformation (buckling) of the column can manifest
only in the symmetry plan Oxy. The buckling out side of the symmetry plane Oxy is
restrained.

As long the intensity of the compressive force P is less than the critical force Pcr; P < Pcr;
the equilibrium con�guration is a straight line and the equilibrium is stable. Consequently,
as known from study of the axial deformation, Lecture 5 of the �rst volume, the conse-
quence of the applied compressive force P is an uniformly distributed normal stress �x
acting on the column cross-section and a shortening � of the column length l :

�x =
P

A
(12)

and

� =
P � L
E � A (13)
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where E is the elastic modulus of the material and A is the constant area of the column
cross-section.

However, if the intensity of compressive force P is increased until the critical force Pcr
is reached, P = Pcr, the equilibrium become neutral equilibrium and an additional con-
�guration, a buckled shape, as shown in Figure 17.5, is possible. This value of force P
corresponds to the bifurcation point on the equilibrium diagram.

Conclusion 5 The concept of the existence at neutral equilibrium, the bifurcation point,
of double con�guration, straight and buckled, corresponding to the same compressive force
P = Pcr is very powerful theoretical concept extensively used in the theoretical derivations
concerned with the stability of elastic columns.

Figure 17.5 Ideal Pined Ended Column - Buckling Shape

The critical compressive load Pcr and the buckled shape of the column are determined
using the equilibrium on the deformed con�guration illustrated in Figure 17.5.c. This is
a static method of investigating the stability of the column and is called the Equilibrium
or Bifurcation method. The reactions pertinent to both column ends, shown in Figure
17.5.b, are obtained solving the the equilibrium equations as:

X
Fx = 0! �P + VO = 0! VO = P (14)X
Fy = 0! �HO �HA = 0! HA = HO = 0

The internal resultants, the axial force F (x) and bending moment Mz(x); acting on a
cross-section located at distance x from the point O; are obtained writing the static
equilibrium equations of the inferior part of the column, isolated from the entire length
l, as shown in Figure 17.5.c:

X
Fx = 0! �F (x) + P = 0 (15)
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X
O

Mz = 0! �Mz(x)� F (x) � v(x) = 0 (16)

Remark 6 The negative sense of the bending momentMz(x) follows the beam convention
described in the �rst volume.

Solving the equations (15) and (16) the axial force F (x) and the bending moment Mz(x)
in a cross-section are expressed as:

F (x) = P (17)

Mz(x) = �P � v(x) (18)

Considering valid the small de�ection assumption, the functional relation between the
bending moment Mz(x) and the curvature k(x) of the lateral de�ection curve v(x) con-
sidered during the study of the bending induced de�ection remains valid:

k(x) =
1

�(x)
' dv(x)2

dx2
=
Mz(x)

E � Iz
(19)

where E and Iz are the material elastic modulus and cross-section moment of inertia,
respectively.

Substituting equation (18) into equation (19) the following second-order homogeneous
di¤erential equation is obtained:

E � Iz � v"(x) + P � v(x) = 0 (20)

Dividing equation (20) by E � Iz; this is recast as:

v(x)" + k2 � v(x) = 0 (21)

where:

k2 =
P

E � Iz
(22)

Conclusion 7 The di¤erential homogeneous equation (22) has constant coe¢ cients due
to the fact that the equilibrium corresponds to neutral equilibrium con�guration�the bi-
furcation point, where the compressive force P = Pcr is constant.
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The general solution of equation (22) is:

v(x) = C1 � sin(k � x) + C2 � cos(k � x) (23)

The integration constants C1 and C2 are obtained by applying the boundary conditions
at both ends, O and A, of the column:

- at point O (x = 0):

v(x = 0) = 0! C1 � sin(k � 0) + C2 � cos(k � 0) = 0 (24)

- at point A (x = l):

v(x = l) = 0! v(x = l) = 0 (25)

! C1 � sin(k � l) + C2 � cos(k � l) = 0

From equation (24) it results:

C2 = 0 (26)

Substituting C2 = 0 into equation (25):

C1 � sin(k � l) = 0 (27)

and consequently, two solutions are possible for C1:

(1) if sin(k � l) 6= 0 then C1 = 0 (28)

or

(2) if sin(k � l) = 0 then C1 6= 0 (29)

Conclusion 8 (a) If solution (28), C1 = 0, is true, it results that the de�ection v(x) is
zero along the entire length of the column and the equilibrium is realized on the undeformed
con�guration;

(b) If solution (29), C1 6= 0, is true, then sin(k � l) = 0, and the de�ection v(x) 6= 0. In
this case the equilibrium is realized on the undeformed con�guration. The trigonometric
equation sin(k � l) = 0 ,(29), has a in�nite number of solutions:

k = kn =
n � �
l

n = 1; 2; ::: (30)

and for each value of n a new kn is obtained. The magnitude of the integration constant C1
remained undetermined, indicating that only the buckling shape is known. It is supposed
that the value of C1 is a small value in order to respect the small deformation assumption
previously made. Finally, the de�ection v(x) is obtained substituting the expression of kn
into equation (23):

v(x) = vn(x) = C1 � sin(kn � x) = C1 � sin(
n � �
l

� x) (31)
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Each de�ection curve vn(x) obtained by assigning n = 1; 2; ::. is called buckling mode. The
buckling modes represent a family of sinusoidal curves. From equation (22) the critical
load P ncr corresponding to each buckling mode is calculated:

P ncr = E � Iz � k2n = E � Iz �
�n � �

l

�2
= E � Iz �

�
�

lnb

�2
(32)

where

lnb =
1

n
� l (33)

is called buckling length corresponding to the n-th buckling mode.

The �rst two buckling modes the corresponding critical loads and buckling length are:

n = 1! v1(x) = C1 � sin(
1 � �
l
� x) (34)

! P 1cr = E � Iz �
��
l

�2
= E � Iz �

 
�

l1f

!2
! l1f = l

n = 2! v2(x) = C1 � sin(
2 � �
l
� x)

! P 2cr = E � Iz �

0B@ �
1

2
l

1CA
2

= E � Iz �
 
�

l2f

!2
! l2f =

l

2

where l1f = l and l
2
f =

l

2
are the buckling lengths corresponding to buckling modes 1 and

2, respectively.

The undeformed con�guration and �rst two buckling modes are illustrated in Figure 17.6.

Figure 17.6 Ideal Pined-Ended Column - Buckling Modes
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Remark 9 Theoretically, a large number of bucking modes are possible to be obtained,
but from practical point of view just the �rst buckling mode (n = 1), also called the
fundamental buckling mode, and its corresponding critical load P 1cr are important. The
�rst critical load, P 1cr, called Euler buckling load in recognition of the Swiss mathematician
Leonhard Euler contribution to the stability problem, is denoted:

P 1cr = E � Iz �
��
l

�2
(35)

The normal stress �cr acting on the column cross-section when F (x) = �Pcr; called Euler
buckling stress, is calculated from equation (35):

�cr(x) =
F (x)

A
= �Pcr

A
= �

E � Iz �
��
l

�2
A

=
E � �2�
l

rz

�2 (36)

where (rz)2 =
Iz
A
is the gyration radius.

The ratio
l

rz
, denoted �; is called slenderness:

� =
l

rz
(37)

Substituting the slenderness expression � into equation (36) the critical normal stress �cr
becomes:

�cr =
E � �2

�2
(38)

Geometrically, the variation of the critical normal stress �cr with the slenderness � is a
hyperbola, called Euler�s hyperbola. The validity of the critical normal stress �cr formula
(38) is restricted by the constitutive law considered employed, the Hook�s Law, to an
upper-bound value equal to the proportionality stress limit of the material �0y :

�cr =
E � �2

�2
� �0y (39)

The resulting slenderness limit �0 is obtained from the limit of inequality (39)
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�0 = � �
s
E

�0y
(40)

Remark 10 The expression (40) indicates that for a slenderness � � �0 the critical
normal stress is always �cr � �0y: For structural steel (E = 200GPa; �0y = 250MPa)
and aluminium (E = 73GPa; �0y = 410MPa) the slenderness limit �0 are 89 and 42,
respectively. The variation of the critical stress �cr(�) with the slenderness � is expressed
as:

�cr(�) =

8<: �0y if � < �0
E � �2

�2
if � � �0

(41)

Remark 11 The variation of the Euler critical stress �cr for steel (E = 200GPa; �0y =
250MPa; �0 = 89) and aluminium (E = 73GPa; �0y = 410MPa; �0 = 42) function of
the slenderness � are illustrated in Figure 17.7

Figure 17.7 Ideal Pin-Ended Column - Critical Stress �cr

1.4.2 Buckling of Columns with Other Rigid Support Conditions

The methodology employed to determine the buckling modes and critical load of pin-
ended column, namely the static method, can be extended to any type of column as long
the buckling shape can be anticipated. In this section a general method of determining
the buckling characteristics of a ideal linear column is introduced and then, applied to
some of the most frequently encounter supporting conditions.
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1.4.2.1 Di¤erential Equations of Beam-Column. The Second Order The-
ory. The equilibrium equations considering the undeformed con�guration, extensively
employed, are referred as the �rst order theory. When the equilibrium equations are
written considering the deformed con�guration, the theoretical derivations are known as
the second order theory.

An ideal linear column, subjected to an axial compressive force P and a transversal load
pn(x); is considered. An in�nitesimal element, of length dx; is isolated from this buckled
column (the deformed con�guration) and pictured in Figure 17.8.a

Remark 12 (a) Two sets of three cross-sectional resultants (axial force, shear force and
bending moment) are de�ned: (1) a set composed of cross-sectional resultants F (x) = �P ,
V (x) and M(x) acting on the cross-section of the undeformed con�guration and (2) a
set comprised of cross-sectional resultants Fd(x), Vd(x) and M(x) acting on the cross-
section of the deformed con�guration. Both sets, illustrated in �gures 17.8.a and 17.8.b,
respectively, are used in the following discussion The relations between the two sets of
axial and shear forces are obtained by projecting the �rst set of forces on the directions of
the second set of forces:

Fd = �P � cos � � V � sin � ' �P � V � � ' �P � V � v0 (42)

Vd = �P � sin � + V � cos � ' �P � � + V ' �P � v0 + V (43)

Remark 13 where �(x) is the rotation angle of the cross-section located at distance x

from the origin and tan � ' sin � = dv

dx
= v0 and cos � ' 1 are approximations valid when

the small displacement assumption is considered.

(b) The variable x, indicating the cross-section position along the column longitudinal
axis is dropped from the following formulae for clarity of writing, but is always implied.
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Figure 17.8 Equilibrium of the In�nitesimal Beam Element

First, the equilibrium of the in�nitesimal element is written using the �rst set of cross-
sectional resultants F (x) = �P , V (x) andM(x): The longitudinal force F (x) is constant
along the column length and equal with the compressive force P . For this reason only
two equations are necessary to describe the equilibrium of the in�nitesimal element dx:

X
Y = 0 (44)

! V � (V + dV )� pn � dx = 0

X
Mright_section = 0 (45)

! M � (M + dM)� P � dv + V � dx� pn(x) � dx �
dx

2
= 0

After algebraic manipulations and neglecting the product of in�nitesimal quantities the
following di¤erential equations are obtained:

dV

dx
= �pn(x) (46)

dM

dx
+ P � dv

dx
� V = 0 (47)

Remark 14 The di¤erential equation (47) di¤ers from the di¤erential equation estab-
lished in Lecture 4 of the �rst volume, where the equilibrium on the undeformed con�gu-

ration is considered, only by the existence of the term P � dv
dx
: This term introduces the

in�uence of the compressive force P .

Substituting the expression of the shear force V obtained from equation (42) into equation
(47) the di¤erential relation between the bending momentM and the shear force Vd acting
on the cross-section of the deformed con�guration is obtained:

dM

dx
+ P � dv

dx
� Vd � P � v0 = 0 (48)

! dM

dx
= Vd
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Remark 15 The di¤erential expression (48) indicates a functional similarity with the
di¤erential expression established from the equilibrium of the undeformed in�nitesimal
element.

Considering equations (19) and (43), the dependence of the bending moment M(x) and
shear force V (x) on the lateral displacement v(x) is expressed:

M(x) = E � Iz � v"(x) (49)

V (x) = Vd + P � v0 =
dM

dx
+ P � v0 = E � Iz � v000 + P � v0 (50)

Di¤erentiating once more equation (47), relatively to variable x; and then substituting
equation (46) into it, the equation (47) becomes:

d2M

dx2
+ P � d

2v

dx2
+ pn(x) = 0 (51)

Considering again valid the assumption of the small deformations, the moment-curvature
relation (19) is substituted into equation (51):

E � Iz �
d4v

dx4
+ P � d

2v

dx2
+ pn(x) = 0 (52)

The equation (52) represents the di¤erential equation of the de�ection curve v(x) for an
ideal column-beam subjected to a compressive force P = constant and a transversal load
pn(x). The general solution is:

v(x) = v0(x) + vp(x) (53)

where v0(x) and vp(x) are the solution of the homogeneous di¤erential equation and the
particular solution, respectively. The particular solution depends on the lateral load
pn(x).

To determine the buckling behavior, the particular case pn(x) = 0 is considered, and
consequently, the di¤erential equation (52) degenerates into a di¤erential homogenous
equation:
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E � Iz �
d4v

dx4
+ P � d

2v

dx2
= 0 (54)

where v(x) = v0(x):

Denoting as before k2 =
P

E � Iz
; the equation (54) is recast as:

d4v

dx4
+ k2 � d

2v

dx2
= 0 (55)

or

vIV + k2 � v" = 0 (56)

The solution of the homogenous di¤erential equation (55) is:

v(x) = C1 � sin(k � x) + C2 cos(k � x) + C3 � x+ C4 (57)

where C1; C2; C3 and C4 are integration constants.

The expressions of the de�ection curve v(x); the �rst, second and third derivatives are
obtained by successively di¤erentiating expression (57):

�(x) ' v0(x) = d

dx
v(x) = k � C1 � cos(k � x)� k � C2 � sin(k � x) + C3 (58)

v00(x) =
d2

dx2
v(x) = �k2 � C1 � sin(k � x)� k2 � C2 � cos(k � x) (59)

v000(x) =
d3

dx3
v(x) = �k3 � C1 � cos(k � x) + k3 � C2 � sin(k � x) (60)

Substituting the above relations into (49) and (50):

M(x) = �k2 � E � Iz � [C1 � sin(k � x) + C2 � cos(k � x)] (61)
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V (x) = E � Iz � [v000 + k2 � v0] = E � Iz � k2 � C3 (62)

The four integration constants, C1; C2; C3 and C4 , are determined recognizing the bound-
ary conditions at the ends of the column. These conditions are of two kinds: (a) kine-
matic, v and �, and (b) static, M(x) and V (x). The most usual encountered boundary
conditions are:

� �xed end v = 0 � = 0 (63)

� pinned end v = 0 M = 0

� free end M = 0 V = 0

� �xed-sliding end � = 0 V = 0

The zero condition expressed by equations (63) are obtained by particularizing the vari-
able x to the position, x = 0 or x = l; of the boundaries in equations (58), (59), (49)
and (50). Consequently, a homogenous algebraic system of four equations containing the
integration constants C1; C2; C3 and C4 as unknowns, is obtained:

�(k � l) � ~C = ~0 (64)

where ~C =

2664
C1
C2
C3
C4

3775 is the integration constants vector.
For the homogenous algebraic system to have solutions outside of the trivial, zero, solu-
tion, the determinant of the matrix �(k � l) has to be equal to zero.

det [�(k � l)] = 0 (65)

The equation obtained by expanding the determinant is called the characteristic equation.
Solving the characteristic equation (65) the buckling modes, buckling length and critical
load are obtained. This exercise is practice in the following sections for a number of
commonly encounter types of ideal column end restrains.

Remark 16 Alltrue there are many equilibrium con�gurations and corresponding buck-
ling modes, for structural engineers only the �rst buckling mode is of interest. In the
following section only the �rst buckling mode and its corresponding characteristics, the
buckling length and critical load, are calculated.
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1.4.2.2 Basic Assumptions Before a number of columns are investigated the main
assumptions already employed, but losses between the lines, are emphasized. These
assumptions are extremely important for a structural engineer because they delimited the
validity �eld of the developed formulae. They are :

1. The cross-section is constant along the entire length of the column and is symmetrical
about the vertical plane xy of the column The symmetry assumption is the grantor of
the fact that buckling manifests only in the plane of symmetry xy;

2. The column is an linear column characterized by a straight axis x and without any
fabrication imperfections;

3. The material is elastic, linear and isotropic (Hook �s Law);

4. The small deformation assumption is valid and re�ected in the proportionality rela-
tion between the cross-sectional bending moment M(x) and the second derivative of the
de�ection v(x) as:M(x) = E � Iz � v00(x);

5. The compressive force P retains its vertical orientation during the deformation and
at the bifurcation point (neutral equilibrium);

6. The in�uence of the shear force on the de�ection is neglected;

7. The concept of the existence of two con�gurations, undeformed and deformed, cor-
responding to the same compressive force Pcris valid. Without this concept the entire
buckling calculations become obsolite.

1.4.2.3 Column with One Fixed End Columns having one end �xed are relatively
frequent encountered in structural engineering. Example of this type of ideal columns
are illustrated in Figure 17.9. Function of the conditions characterizing the other end,
the column is called: �xed-free (�g 17.9.a), �xed-�xed (�g 17.9.b) and �xed-pinned (�g
17.9.c).

Figure 17.9 Ideal One Fixed End Column - Examples
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The boundary conditions at the end O(x = 0), the �xed end, are:

v(x = 0) = 0! C1 � sin(k � 0) + C2 cos(k � 0) + C3 � 0 + C4 = 0 (66)

! C2 + C4 = 0

�(x) = v0(x = 0) = 0! k � C1 � cos(k � 0)� k � C2 � sin(k � 0) + C3 = 0 (67)

! k � C1 + C3 = 0

1.4.2.3.1 Fixed-Free Column (Figure 17.9.a) The boundary conditions at the
end A (x = l) are:

M(x = l) = 0! E � Iz � v"(x = l) = 0! (68)

! �k2 � C1 � sin(k � l)� k2 � C2 � cos(k � l) = 0

and

V (x = l) = 0! E � Iz � vIII(x = l) + P � v0(x = l) = 0! (69)

! k2 � E � Iz � C3 = 0

The algebraic homogeneous algebraic system (64) pertinent to this type of column is:

2664
0 1 0 1
k 0 1 0

�k2 � sin(k � l) �k2 � cos(k � l) 0 0
0 0 k2 � E � Iz 0

3775
2664
C1
C2
C3
C4

3775 =
2664
0
0
0
0

3775 (70)

The determinant of the matrix �(k) is:
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det�(k) =

��������
0 1 0 1
k 0 1 0

�k2 � sin(k � l) �k2 � cos(k � l) 0 0
0 0 k2 � E � Iz 0

�������� = (71)

= k5 � E � Iz � cos(k � l)

The resulting characteristic equation is:

k5 � E � Iz � cos(k � l) = 0 (72)

The solution of the transcendental equation (72) is:

kl =
�

2
+ n � � n = 0; 1; 2; :::: (73)

The solution obtained above can be also graphically found by plotting the variation of
the left-side of equation (42):

Figure 17.10 Fixed-Free Column - Solution

The �rst critical load P 1cr is obtained for n = 0:

P 1cr = E � Iz � k2 = E � Iz �
� �

2 � l

�2
= (74)

=
E � Iz � �
4 � l2

2

= 0:25 � PEcr
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where PEcr =
E � Iz � �2

l2
is the �rst critical load of the Ideal Euler Column.

The buckling length lb is:

lb = 2 � l (75)

Once the solution k � l = �

2
is known, the integration constants are calculated solving the

homogeneous algebraic system (70)

~C =

2664
C1
C2
C3
C4

3775 =
2664

0
C2
0
�C2

3775 (76)

Remark 17 The integration constant C2 remained undetermined and consequently, only
the shape of the de�ection curve v(x) is known.

Substituting the integration constants vector ~C into expressions (57), (58) and (59), the
de�ection, rotation and bending moment are calculated:

v(x) = C2

h
cos(

�

2 � l � x)� 1
i

(77)

�(x) ' v0(x) = � �

2 � l � C2 � sin(
�

2 � l � x) (78)

M(x) = �E � Iz � C2 � (
�

2 � l )
2 � cos( �

2 � l � x) (79)

Conclusion 18 The constant C2 ' 0 must be di¤erent than zero for a deformed con�g-
uration to be possible v(x) ' 0.

The shapes of the de�ection curve v(x) and bending moment M(x) are plotted in Figure
17.11.
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Figure 17.11 Fixed-Free Column - Shapes

1.4.2.3.2 Fixed-Fixed Column (Figure 17.9.b) The boundary conditions at the
end A (x = l) are:

v(x = l) = C1 � sin(k � l) + C2 cos(k � l) + C3 � l + C4 = 0 (80)

and

�(x) = v0(x = l) = k � C1 � cos(k � l)� k � C2 � sin(k � l) + C3 = 0 (81)

The algebraic homogeneous algebraic system (64) pertinent to this type of column is:

2664
0 1 0 1
k 0 1 0

sin(k � l) cos(k � l) l 1
k � cos(k � l) �k � sin(k � l) 1 0

3775
2664
C1
C2
C3
C4

3775 =
2664
0
0
0
0

3775 (82)

The determinant of the matrix �(k) is:

det�(k) =

��������
0 1 0 1
k 0 1 0

sin(k � l) cos(k � l) l 1
k � cos(k � l) �k � sin(k � l) 1 0

�������� = (83)

= k � 2k cos kl + k cos2 kl + k sin2 kl � k2l sin kl =
= k � (2� 2 cos kl � kl sin kl) (84)
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The resulting characteristic equation is:

2� 2 cos kl � kl sin kl = 0 (85)

The solution of the above characteristic equation can not be obtained analytically and
the numerically solution is:

kl = 6:283 2 = 2 � � (86)

This solution can be also graphically obtained, by plotting the function located on the
left-side of the characteristic equation. The plot is shown in Figure 17.12.

Figure 17.12 Fixed-Fixed Column -Solution

The �rst critical load P 1cr is calculated:

P 1cr = E � Iz � k2 = E � Iz �
�
2 � �
l

�2
= (87)

= 4 � E � Iz � �
l2

2

= 4 � PEcr

where PEcr =
E � Iz � �2

l2
is the �rst critical load of the Ideal Euler Column.

The buckling length lb is:

lb = 0:5 � l (88)
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Once the solution k � l = 2 � � is known, the integration constants are calculated solving
the homogeneous algebraic system (82):

~C =

2664
C1
C2
C3
C4

3775 =
2664

0
C2
0
�C2

3775 (89)

Remark 19 The integration constant C2 remained undetermined and consequently, only
the shapes of the de�ection curve is known.

Substituting the integration constants vector ~C into expressions (57), (58) and (59), the
de�ection, rotation and bending moment are calculated:

v(x) = C2

�
cos(

2 � �
l
� x)� 1

�
(90)

�(x) ' v0(x) = �2 � �
l
� C2 � sin(

2 � �
l
� x) (91)

M(x) = �E � Iz � C2 � (
2 � �
l
)2 � cos(2 � �

l
� x) (92)

Conclusion 20 The constant C2 ' 0 must be di¤erent than zero for a deformed con�g-
uration to be possible v(x) ' 0.

The shapes of the de�ection curve v(x) and bending moment M(x) are plotted in Figure
17.13.

Figure 17.13 Fixed-Fixed Column - Shapes
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The shape of the bending moment has two in�ection points, the points where the moment
is zero. The two locations are found:

M(x) = 0

! cos(
2 � �
l
� x) = 0

! 2 � �
l
� x = �

2
and

2 � �
l
� x = �

2
+ �

! x =
l

4
and x =

3 � l
4

Conclusion 21 The in�ection points are located at x = 0:25 � l and x = 0:75 � l:The
distance between the two in�ection points coincide with the buckling length lb = 0:5 � l:

1.4.2.3.3 Fixed-Pined Column (Figure 17.9.c) The boundary conditions at the
end A (x = l) are:

v(x = l) = 0 (93)

! C1 � sin(k � l) + C2 cos(k � l) + C3 � l + C4 = 0

and

M(x = l) = 0! �E � Iz � v"(x = l) = 0 (94)

! �k2 � C1 � sin(k � l)� k2 � C2 � cos(k � l) = 0

The algebraic homogeneous algebraic system (64) pertinent to this type of column is:

2664
0 1 0 1
k 0 1 0

sin(k � l) cos(k � l) l 1
�k2 � sin(k � l) �k2 � cos(k � l) 0 0

3775
2664
C1
C2
C3
C4

3775 =
2664
0
0
0
0

3775 (95)

The determinant of the matrix �(k) is:
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det�(k) =

��������
0 1 0 1
k 0 1 0

sin(k � l) cos(k � l) l 1
�k2 � sin(k � l) �k2 � cos(k � l) 0 0

�������� = (96)

= k2 sin kl � k3l cos kl

The resulting characteristic equation is:

sin kl � kl cos kl = 0 (97)

! tan kl � kl = 0

The solution of the above characteristic equation can not be obtained analytically. The
numerical solution is:

kl = 4:4934 (98)

This solution can be also graphically obtained, by plotting the function located on the
left-side of the characteristic equation. The plot is shown in Figure 17.14.

Figure 17.14 Fixed-Pined Column - Solution

The �rst critical load P 1cr is calculated:
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P 1cr = E � Iz � k2 = E � Iz �
�
4:4934

l

�2
= (99)

= E � Iz �
�
4:4934

l

�2
�2

�2
=

E � Iz � �2� �

4:4934
� l
�2 =

=
E � Iz � �2

(0:69916 � l)2
= 2:0457 � PEcr

where PEcr =
E � Iz � �2

l2
is the �rst critical load of the Ideal Euler Column.

The buckling length lb is:

lb = 0:699 ' 0:7 � l (100)

Once the solution k� l = 4:4934 is known, the integration constants are calculated solving
the homogeneous algebraic system (95):

~C =

2664
C1
C2
C3
C4

3775 =
2664

C1
�k � l � C1
�k � C1
k � l � C1

3775 (101)

Remark 22 The integration constant C1 remained undetermined and consequently, only
the shapes of the de�ection curve v(x) is known.

Substituting the integration constants vector ~C into expressions (57), (58) and (59), the
de�ection, rotation and bending moment are calculated:

v(x) = C1 �
�
sin(

4:4934

l
� x)� 4:4934 � cos(4:4934

l
� x)� 4:4934

l
� x+ 4:4934

�

�(x) ' v0(x) = 4:4934

l
�C1�

�
cos(

4:4934

l
� x) + 4:4934 � sin(4:4934

l
� x)� 4:4934

l

�
(102)

M(x) = �E�Iz�
�
4:4934

l

�2
�C1�

�
� sin(4:4934

l
� x) + 4:4934 � cos(4:4934

l
� x)

�
(103)
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Conclusion 23 The constant C1 ' 0 must be di¤erent than zero for a deformed con�g-
uration to be possible v(x) ' 0.

The shapes of the de�ection curve v(x) and bending moment M(x) are plotted in Figure
17.15.

Figure 17.15 Fixed-Pined Column - Shapes

The shape of the bending moment has one in�ection points, the point where the moment
is zero. The two locations are found:

M(x) = 0

! � sin(4:4934
l

� x) + 4:4934 � cos(4:4934
l

� x) = 0

! tan(
4:4934

l
� x) = 4:4934

! 4:4934

l
� x = 1:351 8 and 4:4934

l
� x = 4:4934

! x = 0:30 � l and x = l

Conclusion 24 The in�ection points are located at x = 0:30 � l and x = l:The distance
between the two in�ection points coincide with the buckling length lb = 0:7 � l:

1.4.2.3.4 Fixed-Sliding Fixed Column The boundary conditions at the end A
(x = l) are:

�(x = l) = v0(x = l) = 0 (104)

! k � C1 � cos(k � l)� k � C2 � sin(k � l) + C3 = 0
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and

V (x = l) = 0! k2 � E � Iz � C3 = 0 (105)

The algebraic homogeneous algebraic system (17.115) pertinent to this type of column
is:

2664
0 1 0 1
k 0 1 0

k � cos(k � l) �k � sin(k � l) 1 0
0 0 k2 � E � Iz 0

3775
2664
C1
C2
C3
C4

3775 =
2664
0
0
0
0

3775 (106)

The determinant of the matrix �(k) is:

det�(k) =

��������
0 1 0 1
k 0 1 0

k � cos(k � l) �k � sin(k � l) 1 0
0 0 k2 � E � Iz 0

�������� = (107)

= k4EIz sin kl

The resulting characteristic equation is:

sin kl = 0 (108)

The solution of the above characteristic equation is:

kl = � (109)

This solution can be also graphically obtained, by plotting the function located on the
left-side of the characteristic equation. The plot is shown in Figure 17.16.

29



Figure 17.16Fixed-Sliding Fixed Column - Solution

The �rst critical load P 1cr is calculated:

P 1cr = E � Iz � k2 = E � Iz �
��
l

�2
= (110)

=
E � Iz � �2

l2
= PEcr

where PEcr =
E � Iz � �2

l2
is the �rst critical load of the Ideal Euler Column.

The buckling length lb is:

lb = l (111)

Once the solution k � l = � is known, the integration constants are calculated solving the
homogeneous algebraic system (95):

~C =

2664
C1
C2
C3
C4

3775 =
2664

0
C2
0
�C2

3775 (112)

Remark 25 The integration constant C1 remained undetermined and consequently, only
the shapes of the de�ection curve v(x) is known.
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Substituting the integration constants vector ~C into expressions (57), (58) and (59), the
de�ection, rotation and bending moment are calculated:

v(x) = �C2 �
h
cos(

�

l
� x)� 1

i

�(x) ' v0(x) = C2 �
�

l
� sin(�

l
� x) (113)

M(x) = �E � Iz �
��
l

�2
� cos(�

l
� x) (114)

Conclusion 26 The constant C2 ' 0 must be di¤erent than zero for a deformed con�g-
uration to be possible v(x) ' 0.

The shapes of the de�ection curve v(x) and bending moment M(x) are plotted in Figure
17.17.

Figure 17.17 Ideal Fixed-Sliding Fixed Column - Shapes

The shape of the bending moment has one in�ection points, the point where the moment
is zero. The two locations are found:

M(x) = 0

! cos(
�

l
� x) = 0

! x = 0:50 � l and x = 1:5 � l
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1.4.2.4 Column with OnePined End The boundary conditions at the end O, the
hinged end, are:

v(x = 0) = 0! C1 � sin(k � 0) + C2 cos(k � 0) + C3 � 0 + C4 = 0 (115)

! C2 + C4 = 0

M(x = 0) = 0! E � Iz � v"(x = 0) = 0 (116)

! E � Iz � �k2 � C1 � sin(k � 0)� k2 � C2 � cos(k � 0)] = 0
! E � Iz � C2 = 0! C2 = 0

1.4.2.4.1 Pined-Pined Column (Euler�s Column) The boundary conditions at
the end A (x = l) are:

v(x = l) = C1 � sin(k � l) + C2 cos(k � l) + C3 � l + C4 = 0 (117)

and

M(x = l) = 0! E � Iz � v"(x = l) = 0 (118)

! �k2 � C1 � sin(k � l)� k2 � C2 � cos(k � l) = 0

The algebraic homogeneous algebraic system pertinent to this type of column is:

2664
0 1 0 1
0 1 0 0

sin(k � l) cos(k � l) l 1
�k2 � sin(k � l) �k2 � cos(k � l) 0 0

3775
2664
C1
C2
C3
C4

3775 =
2664
0
0
0
0

3775 (119)

The determinant of the matrix �(k) is:
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Figure 1: Figure 17.18 Pined-Pined Column - Solution

det�(k) =

��������
0 1 0 1
0 1 0 0

sin(k � l) cos(k � l) l 1
�k2 � sin(k � l) �k2 � cos(k � l) 0 0

�������� = (120)

= k2l sin kl

The resulting characteristic equation is:

sin kl = 0 (121)

The solution of the above characteristic equation is:

kl = � (122)

This solution can be also graphically obtained, by plotting the function located on the
left-side of the characteristic equation. The plot is shown in Figure 17.18.

The �rst critical load P 1cr is calculated:

P 1cr = E � Iz � k2 = E � Iz �
��
l

�2
= (123)

=
E � Iz � �2

l2
= PEcr
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where PEcr =
E � Iz � �2

l2
is the �rst critical load of the Ideal Euler Column.

The buckling length lb is:

lb = l (124)

Once the solution k � l = � is known, the integration constants are calculated solving the
homogeneous algebraic system (119):

~C =

2664
C1
C2
C3
C4

3775 =
2664
C1
0
0
0

3775 (125)

Remark 27 The integration constant C1 remained undetermined and consequently, only
the shapes of the de�ection curve v(x) is known.

Substituting the integration constants vector ~C into expressions (57), (58) and (59), the
de�ection, rotation and bending moment are calculated:

v(x) = C1 � sin(k � x) (126)

�(x) ' v0(x) = C1 � k � cos(k � x) (127)

M(x) = �E � Iz � C1 � k2 � sin(k � x) (128)

Conclusion 28 The constant C1 ' 0 must be di¤erent than zero for a deformed con�g-
uration to be possible v(x) ' 0.

The shapes of the de�ection curve v(x) and bending moment M(x) are plotted in Figure
17.19.
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Figure 17.19 Pined-Pined Column - Shapes

The shape of the bending moment has one in�ection points, the point where the moment
is zero. The two locations are found:

M(x) = 0

! sin(
�

l
� x) = 0

! x = 0 and x = l

Conclusion 29 The in�ection points are located, as expected, at x = 0 and x = l:The
distance between the two in�ection points coincide with the buckling length lb = l:

1.4.2.4.2 Pined-Sliding Fixed Column The boundary conditions at the end A
(x = l) are:

�(x = l) = v0(x = l) = 0 (129)

! k � C1 � cos(k � l)� k � C2 � sin(k � l) + C3 = 0
! C1 � cos(k � l)� C2 � sin(k � l) + C3 = 0 (130)

and

V (x = l) = 0! E � Iz � vIII(x = l) + P � v0(x = l) = 0!
! k2 � E � Iz � C3 = 0! k2 � C3 = 0

35



The algebraic homogeneous algebraic system pertinent to this type of column is:

2664
0 1 0 1
0 1 0 0

cos(k � l) � sin(k � l) 1 0
0 0 k2 0

3775
2664
C1
C2
C3
C4

3775 =
2664
0
0
0
0

3775 (131)

The determinant of the matrix �(k) is:

det�(k) =

��������
0 1 0 1
0 1 0 0

cos(k � l) � sin(k � l) 1 0
0 0 k2 0

�������� = (132)

= k2 cos kl

The resulting characteristic equation is:

cos kl = 0 (133)

The solution of the above characteristic equation is:

kl =
�

2
(134)

This solution can be also graphically obtained, by plotting the function located on the
left-side of the characteristic equation. The plot is shown in Figure 17.20.

Figure 17.20 Pined-Sliding Fixed Column - Solution
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The �rst critical load P 1cr is calculated:

P 1cr = E � Iz � k2 = E � Iz �
� �

2 � l

�2
= (135)

=
E � Iz � �2
(2 � l)2 = 0:25 � PEcr

where PEcr =
E � Iz � �2

l2
is the �rst critical load of the Ideal Euler Column.

The buckling length lb is:

lb = 2 � l (136)

Once the solution k � l = � is known, the integration constants are calculated solving the
homogeneous algebraic system (119):

~C =

2664
C1
C2
C3
C4

3775 =
2664
C1
0
0
0

3775 (137)

Remark 30 The integration constant C1 remained undetermined and consequently, only
the shapes of the de�ection curve v(x) is known.

Substituting the integration constants vector ~C into expressions (57), (58) and (59), the
de�ection, rotation and bending moment are calculated:

v(x) = C1 � sin(
�

2 � l � x) (138)

�(x) ' v0(x) = C1 � k � cos(
�

2 � l � x) (139)

M(x) = �E � Iz � C1 � k2 � sin(
�

2 � l � x) (140)
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Conclusion 31 The constant C1 ' 0 must be di¤erent than zero for a deformed con�g-
uration to be possible v(x) ' 0.

The shapes of the de�ection curve v(x) and bending moment M(x) are plotted in Figure
17.21.

Figure 17.21 Pined-Sliding Fixed Column - Shapes

The shape of the bending moment has one in�ection points, the point where the moment
is zero. The two locations are found:

M(x) = 0

! sin(
�

2 � l � x) = 0
! x = 0 and x = 2 � l

Conclusion 32 The in�ection points are located, as expected, at x = 0 and x = 2� l:The
distance between the two in�ection points coincide with the buckling length lb = 2 � l:

1.4.2.4.3 Pined-Fixed Column The boundary conditions at the end A (x = l) are:

v(x = l) = 0! C1 � sin(k � l) + C2 cos(k � l) + C3 � l + C4 = 0 (141)

and

�(x = l) = v0(x = l) = 0 (142)

! k � C1 � cos(k � l)� k � C2 � sin(k � l) + C3 = 0
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The algebraic homogeneous algebraic system pertinent to this type of column is:

2664
0 1 0 1
0 1 0 0

sin(k � l) cos(k � l) l 1
k � cos(k � l) �k � sin(k � l) 1 0

3775
2664
C1
C2
C3
C4

3775 =
2664
0
0
0
0

3775 (143)

The determinant of the matrix �(k) is:

det�(k) =

��������
0 1 0 1
0 1 0 0

sin(k � l) cos(k � l) l 1
k � cos(k � l) �k � sin(k � l) 1 0

�������� = (144)

= sin kl � kl cos kl

The resulting characteristic equation is:

sin kl � kl cos kl = 0 (145)

! tan kl � kl = 0 (146)

The solution of the above characteristic equation is obtained numerically:

kl = 4:4934 (147)

This solution can also be graphically obtained, by plotting the function located on the
left-side of the characteristic equation. The plot is shown in Figure 17.22.

Figure 17.22 Pined-Fixed Column - Solution
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The �rst critical load P 1cr is calculated:

P 1cr = E � Iz � k2 = E � Iz �
�
4:4934

l

�2
= (148)

=

�
4:4934

�

�2
� E � Iz � �

2

l2
= 2:046 � PEcr

where PEcr =
E � Iz � �2

l2
is the �rst critical load of the Ideal Euler Column.

The buckling length lb is:

lb = 0:699 � l ' 0:7 � l (149)

Once the solution k � l = � is known, the integration constants are calculated solving the
homogeneous algebraic system (143):

~C =

2664
C1
C2
C3
C4

3775 =
26664

C1
0

�sin 4:4934
l

� C1
0

37775 (150)

Remark 33 The integration constant C1 remained undetermined and consequently, only
the shapes of the de�ection curve v(x) is known.

Substituting the integration constants vector ~C into expressions (57), (58) and (59), the
de�ection, rotation and bending moment are calculated:

v(x) = C1 �
�
sin(

4:4934

l
� x)� x � sin 4:4934

l

�
(151)

�(x) ' v0(x) = C1 �
4:4934

l
�
�
cos(

4:4934

l
� x)� 1

�
(152)

M(x) = E � Iz � C1 �
�
4:4934

l

�2
� sin(4:4934

l
� x) (153)
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Conclusion 34 The constant C1 ' 0 must be di¤erent than zero for a deformed con�g-
uration to be possible v(x) ' 0.

The shapes of the de�ection curve v(x) and bending moment M(x) are plotted in Figure
17.23.

Figure 17.23 Pined-Fixed Column - Shapes

The shape of the bending moment has one in�ection points, the point where the moment
is zero. The two locations are found:

M(x) = 0

! sin(
4:4934

l
� x) = 0

! x = 0 and x = 0:699 16l ' 0:7 � l

Conclusion 35 The in�ection points are located, as expected, at x = 0 and x = 0:7�l:The
distance between the two in�ection points coincide with the buckling length lb = 0:7 � l:

1.4.3 Buckling of Columns with Linear Elastic Restrained Ends

A special type of columns are those characterized by elastically restrained ends. This type
of columns provide a simpli�ed way of analyzing the buckling of columns which are part
of an ensemble of elastic structural elements, by isolating the column and representing
the surrounding structure by elastic springs located at the ends. The methodology used
is identical with that used in the previous section. From the multitude of possibilities
only two cases are in-depth considered: the hinged-pined column with rotational elastic
spring (Figure 17.24.a) and the �xed-free column with horizontal elastic spring (Figure
17.24.b). Any other alternative can be analyzed in a similar manner. The last example
(Figure 17.24.c) is a general case which can be used to analyze any combination of elastic
linear restrained ends.
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Figure 17.24 Type of Columns with Linear Elastic Restrained Ends

1.4.3.1 pin-ended Column with Rotational Elastic Spring (Figure 17.24.a)
The column considered for investigation is shown in Figure 17.24.a The rotational spring
restrains the rotation � about z axis at the end A and is characterized by a linear spring
constant ��:The boundary conditions are:

- at the hinged end O (x = 0)

v(x = 0) = 0! C1 � sin(k � 0) + C2 cos(k � 0) + C3 � 0 + C4 = 0! (154)

! C2 + C4 = 0 (155)

M(x = 0) = 0!
! E � Iz � v"(x = 0) = 0! v"(x = 0) = 0! (156)

! [�k2 � C1 � sin(k � 0)� k2 � C2 � cos(k � 0)] = 0! (157)

! C2 = 0 (158)

- at the pined end A (x = l)

v(x = l) = 0! C1 � sin(k � l) + C2 cos(k � l) + C3 � l + C4 = 0 (159)

�M(x = l) =Mspring (160)

! �E � Iz � v"(x = l) = �� � v0(x = l)!
! �E � Iz � [�k2 � C1 � sin(k � l)� k2 � C2 � cos(k � l)] = �� � [k � C1 � cos(k � l)� k � C2 � sin(k � l) + C3]!
! [k2 � E � Iz � sin(k � l)� k � �� � cos(k � l)]C1 + [k � �� � sin(k � l) + k2 � E � Iz � cos(k � l)]C2 � �� � C3 = 0
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Remark 36 The (�) minus sign in front of M(x = l) is due to the positive moment
convention used.

The determinant �(k) of the integration constants is:

�(k) =

2664
0 1 0 1
0 1 0 0

sin(k � l) cos(k � l) l 1
k2EIz sin kl � k�� cos kl k�� sin kl + k

2EIz cos kl ��� 0

3775 = (161)

= k � l � �� � cos(k � l)� �� � sin(k � l)� k2 � l � E � Iz � sin(k � l)

The resulting characteristic equation is:

k � l � �� � cos(k � l)� �� � sin(k � l)� k2 � l � E � Iz � sin(k � l) = 0! (162)

�� � [k � l � cos(k � l)� sin(k � l)]� k2 � l � E � Iz � sin(k � l) = 0!
�� � [k � l � cos(k � l)� sin(k � l)]� k2 � l � E � Iz � sin(k � l) = 0

If the rotational spring constant �� is expressed as:

�� = � �
E � Iz
l

(163)

where � is a positive real constant varying in the interval (0::1); :the characteristic
equation:(162) becomes:

� � E � Iz
l

� [k � l � cos(k � l)� sin(k � l)]� k2 � l � E � Iz � sin(k � l) = 0!(164)

� � [k � l � cos(k � l)� sin(k � l)]� k2 � l2 � sin(k � l) = 0

The equation (164) indicates a dependency of the product k � l on the real constant
�: The analytical solution of the equation (??) is an impossibility and consequently, the
graphical method is employed. The functional relation ��kl; expressed by equation (164),
is implicitly plotted in Figure 17.25 for � values varying in the interval 0 to 1 ' :1000:
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Figure 17.25

Remark 37 Analyzing the graph pictured in Figure 17.25 results:

(a) the functional relation ��kl is a continuum increasing function, tending assimpthot-
ically at k � l = 4:49;

(b) solving equation (164) for � = 0 the solution k � l = � is found, a value corresponding
to hinged-pinned column;

(c) solving equation (164) for � = 1 the solution k � l = 4:493 is found; a value corre-
sponding to hinged-�xed column;

For a speci�ed � value, using the graph shown in Figure 17.25, the corresponding k � l is
found:

k � l = number (165)

The minimum critical load is calculated, as usual, as:

Pcr = E � Iz � k2 = E � Iz �
number2

l2
� �

2

�2
= (166)

=
E � Iz � �2

(
� � l
number

)2
=
E � Iz � �2

l2b

where the buckling length lb is obtained as:

lb =
� � l
number

(167)
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The numerical value of number 2 [�; 4:493]; in conformity with the plot shown in Figure
17.25, and consequently, the ratio

lb
l
2 [1; 0:7]: The variation of the ratio lb

l
is shown in

Figure 17.26

Figure 17.26 Ratio
lb
l

1.4.3.2 Fixed-Free Column with Horizontal Elastic Spring (Figure 17.24.b)
The second example of a column with elastic restrains is the �xed-free column with a
horizontal linear elastic spring attached at the end A of the column as shown in Figure
17.24.b. The horizontal linear spring is characterized by a elastic spring constant �v: The
integration constants are obtained imposing the boundary conditions:

- at he �xed end, point O (x = 0):

v(x = 0) = 0! C1 � sin(k � 0) + C2 cos(k � 0) + C3 � 0 + C4 = 0! (168)

! C2 + C4 = 0

�(x = 0) = 0! k � C1 � cos(k � 0)� k � C2 � sin(k � 0) + C3 = 0! (169)

! k � C1 + C3 = 0 (170)

- at the end A (x = l), where the horizontal linear spring impedes on the horizontal
displacement:
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�M(x = l) = 0! �E � Iz � v"(x = l) = 0! v"(x = l) = 0 (171)

! �k2 � C1 � sin(k � l)� k2 � C2 � cos(k � l) = 0!
! k2 � C1 � sin(k � l) + k2 � C2 � cos(k � l) = 0

�V (x = l) = �v � v(x = l) (172)

! �[E � Iz � vIII(x = l) + P � v0(x = l)] = �v � v(x = l)!
! �k2 � E � Iz � C3 = �v [C1 � sin(k � l) + C2 cos(k � l) + C3 � l + C4]
! �v � sin(k � l) � C1 + �v � cos(k � l) � C2 + (E � Iz � k2 + l � �v) � C3 + �v � C4 = 0

The determinant �(k) is:

�(k) =

2664
0 1 0 1
k 0 1 0

k2 � sin(k � l) k2 � cos(k � l) 0 0
�v � sin(k � l) �v � cos(k � l) E � Iz � k2 + l � �v �v

3775 = (173)

= k2 � �v � sin(k � l)� k3 � l � �v � cos(k � l)� k5 � E � Iz � cos(k � l)

The resulting characteristic equation is:

k2 � �v � sin(k � l)� k3 � l � �v � cos(k � l)� k5 � E � Iz � cos(k � l) = 0! (174)

�v � sin(k � l)� k � l � �v � cos(k � l)� k3 � E � Iz � cos(k � l) = 0!
�v � [sin(k � l)� k � l � cos(k � l)]� k3 � E � Iz � cos(k � l) = 0

If the rotational spring constant �v is expressed as:

�� = � �
E � Iz
l3

(175)

where � is a positive real constant varying in the interval (0::1); the characteristic
equation:(174) becomes:
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� � [sin(k � l)� k � l � cos(k � l)]� k3 � l3 � cos(k � l) = 0 (176)

Equation (176) indicates a dependency of the product k � l on the real constant �:
The equation (??) does not have a analytically solution and consequently, the graphical
method is employed. The functional relation � � kl; expressed by equation (176), is
implicitly plotted in Figure 17.27 for � 2 [0;1 ' :1000]:

Remark 38 (a) solving equation (176) for � = 0 results a value k � l = �

2
= 1:570 8;

(b) solving equation (176) for � = 1000 results a value k � l = 4:493;

(c) the variation of the k � l as function of � has a linear aspect, starting at 4:712 for
� = 0:001 and tending towards 4:493 for � = 1000:A discontinuity point is found at
� = 0:The starting value of the linear graph k � l = 4:712 corresponds to the second root
of the equation (176) when � = 0:

(d) The variation of k� l is very limited and can be conservatively represented by the value
(k � l)min = 4:493 for all values of �, with the exception of discontinuity point � = 0:This
�nding indicates that the smallest elastic restraining of the cantilever tip will drastically
increase the value of k � l, which in return reduces the buckling length lb.

Figure 17.27

The minimum critical load Pmincr is calculated:

Pmincr = E � Iz � k2 = E � Iz �
4:4932

l2
� �

2

�2
= (177)

=
E � Iz � �2

(
� � l
4:493

)2
=
E � Iz � �2
(lmaxb )2

for � = [0:01;1]
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where the buckling length lmaxb is obtained as:

lmaxb =
� � l
4:493

= 0:7 � l for � = [0:01;1] (178)

1.4.3.3 A General Case of Elastic Elastic Restrains (Figure 17.24.c) A more
general case of column with linear elastic restrains located at the ends is illustrated in
Figure 17.24.c. The end O (x = 0) is hinged, but its rotation impeded by an elastic
linear rotational spring, characterized by a spring constant ��1. The other end, the point
A (x = l), has its lateral displacement and rotation restrained by two linear elastic
springs, a horizontal disposed spring of rigidity �v and a rotational spring of rigidity ��2.
The integration constants are determined imposing the boundary conditions:

- at the hinged end O (x = 0) :

v(x = 0) = 0! C1 � sin(k � 0) + C2 cos(k � 0) + C3 � 0 + C4 = 0! (179)

! C2 + C4 = 0

M(x = 0) =Mspring1 (180)

! E � Iz � v"(x = 0) = ��1 � v0(x = 0)!
! E � Iz � [�k2 � C1 � sin(k � 0)� k2 � C2 � cos(k � 0)] = ��1 � [k � C1 � cos(k � 0)� k � C2 � sin(k � 0) + C3]!
! E � Iz � [�k2 � C2] = ��1 � [k � C1 + C3]!
! ��1 � k � C1 + E � Iz � k2 � C2 + ��1 � C3 = 0

- at the pined end A (x = l)

�V (x = l) = �v2 � v(x = l) (181)

! �[E � Iz � vIII(x = l) + P � v0(x = l)] = �v2 � v(x = l)!
! �k2 � E � Iz � C3 = �v2 � [C1 � sin(k � l) + C2 cos(k � l) + C3 � l + C4]
! �v2 � sin(k � l) � C1 + �v2 � cos(k � l) � C2 + (E � Iz � k2 + l � �v2) � C3 + �v2 � C4 = 0

�M(x = l) =Mspring (182)

! �E � Iz � v"(x = l) = ��2 � v0(x = l)!
! �E � Iz � [�k2 � C1 � sin(k � l)� k2 � C2 � cos(k � l)] = ��2 � [k � C1 � cos(k � l)� k � C2 � sin(k � l) + C3]!
! [k2 � E � Iz � sin(k � l)� k � ��2 � cos(k � l)]C1 + [k2 � E � Iz � cos(k � l) + k � ��2 � sin(k � l)]C2 � ��2 � C3 = 0
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Remark 39 The (�) minus sign in front of M(x = l) and �V (x = l) are due to the
positive moment and shear force convention used.

The determinant �(k) of the integration constants is:

�(k) =

2664
0 1 0 1

�1 � k E � Iz � k2 �1 0
�v � sin(k � l) ��v � cos(k � l) E � Iz � k2 + l � �v �v

k2EIz sin kl � k�2 cos kl k2EIz cos kl + k�2 sin kl ��2 0

3775 = (183)

k5 � �1 � E2I2z cos kl � k�1�2�v � k6E3I3z sin kl + k5�2E2I2z cos kl + k�1�2�v cos2 kl �
�k�1�2�v sin2 kl � k4l�vE2I2z sin kl + k2l�1�2�v sin kl + k4�1�2EIz sin kl � k2�1�vEIz sin kl �
�k2�2�vEIz sin kl � 2k2�1�vEIz cos kl sin kl + k3l�1�vEIz cos kl + k3l�2�vEIz cos kl

After algebraic manipulation the characteristic equation is:

(� sin kl) k5 + (�1 cos kl + �2 cos kl) k4 + (�1�2 sin kl � l�v sin kl) k3 + (l�1�v cos kl + l�2�v cos kl) k2 + (184)

+(l�1�2�v sin kl � �2�v sin kl � 2�1�v cos kl sin kl � �1�v sin kl) k +
�
�1�2�v cos

2 kl � �1�2�v sin2 kl � �1�2�v
�

= 0

where �1 =
�1

E � Iz
; �2 =

�2
E � Iz

and �v =
�v

E � Iz
are the rigidity coe¢ cients. of the

linear elastic springs.

Remark 40 (a) A variation of the rigidity coe¢ cient from 0 to 10 practically covers the
range from absence of the spring to a rigid connection;

(b) The determinant (183) and the characteristic equation (183) can be particularized
function of the particular conditions existing at the ends of the column.

1.5 Limitations of the Linear Elastic Stability. Discussions

The stability (buckling) of the columns, characterized by rigid or elastic end restraints
and subjected to a compressive axial load, is based on the seven basic assumptions ac-
knowledged at the beginning of the previous section. These assumptions, commonly used
in the structural engineering evaluation, bring the advantage of reducing the mathemati-
cal complexity, but obviously induced limitations of the derived formulae. In this section
some of these assumptions are relaxed and the validity range of the previously derived
formulae is established.
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1.5.1 Initial Curvature. Imperfections in Columns.

In the engineering practice, the assumption of perfect linearity of the column central
line is often violated, due to the existence of the initial imperfection resulting from the
fabrication process of the material employed. In this case the column has an initial
crookedness v0(x) a function, in general, di¢ cult to anticipate Just to emphasize the
e¤ect of the initial crookedness on the behavior of a Euler ideal hinged-pinned column, a
sinusoidal representation for v0(x) is assumed as:

v0(x) = � � sin(� � x) (185)

where � = n � �
l
and � are two constants and l is the length of the column.

The total lateral displacement v(x) of the buckled column is expressed as:

v(x) = w(x) + v0(x) (186)

where w(x) is the lateral displacement measured from the initial position v0(x) to the
�nal position v(x):

In the absence of the transversal load the di¤erential equation (55) retains its validity,
but has to be applied in a slightly di¤erent form, as:

wIV + k2 � v" = 0 (187)

Remark 41 Following the derivation of the di¤erential equation (55) results that the
forth order derivative of v(x) represents in fact the second order derivative of the bending
moment M . Because the bending moment is produced by change in curvature only the
lateral displacement w(x) participate, and consequently, only the forth order derivative of
the w(x) appears in the �rst term of the equation (187).

Substituting equation (186) into equation (187) a new non-homogeneous forth order or-
dinary di¤erential equation is obtained:

wIV + k2 � w" = �k2 � v0" = �k2 � �2 � � � sin(� � x) (188)

The solution of the di¤erential equation (188) is obtained as:
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w(x) = w0(x) + wp(x) (189)

where w0(x) and wp(x) are the solutions of the homogeneous and particular solutions of
the di¤erential equation (189), respectively.

The homogeneous solution, similar to solution (57), is:

w0(x) = C1 � sin(k � x) + C2 cos(k � x) + C3 � x+ C4 (190)

The particular solution wp(x) is expressed in a similar manner to v0(x) as:

wp(x) = � � sin(� � x) (191)

where � is an unknown constant, remaining to be determined.

The particular solution wp(x) must verify the equation (188):

� � �4 � sin(� � x)� � � k2 � �2 � sin(� � x) = k2 � �2 � � � sin(� � x) (192)

and after algebraic manipulations the constant � is obtained as:

� =
k2

�2 � k2
� � (193)

Consequently, in accordance to equation (186) the general solution v(x) is calculated:

v(x) = w(x) + w0(x) = w0(x) + wp(x) + w0(x) = (194)

= C1 � sin(k � x) + C2 cos(k � x) + C3 � x+ C4 +
k2

�2 � k2
� � � sin(� � x) + � � sin(� � x) =

= C1 � sin(k � x) + C2 cos(k � x) + C3 � x+ C4 + (
k2

�2 � k2
+ 1) � � � sin(� � x) =

= C1 � sin(k � x) + C2 cos(k � x) + C3 � x+ C4 +
�2

�2 � k2
� � � sin(� � x)
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where the relative displacement w(x) is:

w(x) = C1 � sin(k � x) +C2 cos(k � x) +C3 � x+C4 +
k2

�2 � k2
� � � sin(� � x) (195)

The integration constants, C1; C2; C3 and C4, are determined by imposing the boundary
conditions at the ends of the column. The boundary conditions at point A, the hinged
end, located at (x = 0) are:

v(x = 0) = 0! C1 � sin(k � 0) + C2 cos(k � 0) + C3 � 0 + C4 +
�2

�2 � k2
� � � sin(� � 0) = 0!(196)

! C2 + C4 = 0

M(x = 0) = 0! E � Iz � w"(x = 0) = 0! w"(x = 0) = 0! (197)

! �k2 � C1 � sin(k � 0)� k2 � C2 cos(k � 0)�
�2 � k2

�2 � k2
� � � sin(� � 0) = 0!

! C2 = 0

The boundary conditions at end B, located at (x = l), are:

v(x = l) = 0! C1�sin(k�l)+C2 cos(k�l)+C3�l+C4+
�2

�2 � k2
���sin(��l) = 0 (198)

M(x = l) = 0! E � Iz � w"(x = l) = 0! w"(x = l) = 0! (199)

! �k2 � C1 � sin(k � l)� k2 � C2 cos(k � l)�
�2 � k2

�2 � k2
� � � sin(� � l) = 0!

! C1 � sin(k � l) + C2 cos(k � l) +
�2

�2 � k2
� � � sin(� � l) = 0

The equations (196) through (199) are forming an algebraic system matricially expressed
as:
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2664
0 1 0 1
0 1 0 0

sin(k � l) cos(k � l) l 1
sin(k � l) cos(k � l) 0 0

3775
2664
C1
C2
C3
C4

3775 =
26666664

0
0

� �2

�2 � k2
� � � sin(� � l)

� �2

�2 � k2
� � � sin(� � l)

37777775 (200)

Solving the algebraic system (200) the following solutions are obtained:

2664
C1
C2
C3
C4

3775 = � �2

�2 � k2
� � � sin(� � l) �

2664
1

sin(k�l)
0
0
0

3775 (201)

The �nal expressions of the lateral displacement v(x) and bending moment M(x) are
then calculated:

v(x) = C1 � sin(k � x) + C2 cos(k � x) + C3 � x+ C4 +
�2

�2 � k2
� � � sin(� � x) =(202)

= � �2

�2 � k2
� � � sin(� � l) � 1

sin(k � l) � sin(k � x) +
�2

�2 � k2
� � � sin(� � x) =

=
�2

�2 � k2
� � � [sin(� � x)� sin(� � l)

sin(k � l) � sin(k � x)] =

=
1

1� k2

�2

� � � [sin(� � x)� sin(� � l)
sin(k � l) � sin(k � x)] =

=
1

1� P

n2 � Pcr

� � � [sin(n � �
l
� x)� sin(n � �)

sin(k � l) � sin(k � x)]

and
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M(x) = E � Iz � w"(x) = (203)

= E � Iz � [�k2 � C1 � sin(k � x)� k2 � C2 cos(k � x)�
�2 � k2

�2 � k2
� � � sin(� � x)] =

= �E � Iz � k2 � [�
�2

�2 � k2
� � � sin(� � l) � 1

sin(k � l) � sin(k � x) +
�2

�2 � k2
� � � sin(� � x)] =

= E � Iz � k2 �
�2

�2 � k2
� � � [ sin(� � l)

sin(k � l) � sin(k � x)� sin(� � x)] =

= P � �2

�2 � k2
� � � [ sin(� � l)

sin(k � l) � sin(k � x)� sin(� � x)] =

= � P

1� P

n2 � Pcr

� � � [sin(n � �
l
� x)� sin(n � �)

sin(k � l) � sin(k � x)] =

= �P � v(x)

Remark 42 From equations (202) and (203) results that the maximum bending moment
Mmax and the total displacement vmax are realized in the same cross-section.

Considering n � 1 and is an integer number (n = 1 ; 2 ; 3 :::); the total displacement and
the bending moment functions became:

v(x) =
1

1� P

n2 � Pcr

� � � [sin(n � �
l
� x)� sin(n � �)

sin(k � l) � sin(k � x)] (204)

=
1

1� P

n2 � Pcr

� � � sin(n � �
l
� x) (205)

and

M(x) = �P � v(x) = � P

1� P

n2 � Pcr

� � � sin(n � �
l
� x) (206)

Remark 43 It can be noted that the initial imperfection has zero values at both ends of
the column and consequently sin(n � �) = 0.
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The maximum values of both functions, v(x) andM(x); is realized for when cos(n��
l
�x) =

0 and, consequently, at location x =
l

2 � n:The following maximum values are calculated:

vmax =
1

1� P

n2 � Pcr

� � (207)

and

Mmax =
P

1� P

n2 � Pcr

� � (208)

Then, the maximum normal stress �maxx is obtained:

�maxx =
P

A
+
Mmax

Iz
� ymax =

P

A
+

P � �

A � r2z � (1�
P

n2 � Pcr
)
� ymax = (209)

=
P

A
� (1 + �

r2z � (1� P
n2�Pcr )

� ymax) =
P

A
� (1 + 


(1� P

n2 � Pcr
)
) =

= �c � (1 +



(1� P

n2 � Pcr
)
)

where 
 =
�

r2z
�ymax is called the imperfection ratio and �c =.

P

A
is the compressive normal

stress.

Considering that �maxx = �0y (the proportionality limit stress) a family of normalized

curves representing the ratio y=
�c
�0y

can the calculated function of the ratios 
 =
�

r2z
�

ymax:and x =
P

Pcr
:

y =
1

1 +



1� 1

n2
� x

(210)

The case corresponding to n = 1 is pictured in Figure 17.28.
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Figure 17.28 Column with Initial Imperfections

The normalized curves y =
�c
�0y

corresponding to �ve values of the imperfection ratio


 2 (0; 0:1; 0:5; 1; 2) and 0 � x = P

Pcr
� 1 are shown in Figure17.29.

Figure 17.29 Rartio
�c
�0y
for n = 1

For the case when n = 2 a similar family of curves
�c
�0y
cores[pending to 
 2 (0; 0:1; 0:5; 1; 2)

and 0 � x = P

Pcr
� 1 are plotted in Figure17.30
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Figure 17.30 Rartio
�c
�0y
for n = 2

For a more realistic case, n = 6, a similar family of curves
�c
�0y
for 
 2 (0; 0:1; 0:5; 1; 2) and

0 � x = P

Pcr
� 1 are plotted in Figure17.31.

Figure 17.31 Rartio
�c
�0y
for n = 6

For comparison the variation of the ratio y =
�c
�0y
is plotted in Figure 17.32 for values of

n = (1; 2; 3; 4; 5) and an imperfection ratio 
 = 0:5:
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Figure 17.32 Ratio
�c
�0y
for 
 = 0:5

Remark 44 (a) Starting at n = 2 the ratio y =
�c
�0y
has a linear aspect and tends towards

an uniform limit
1

1 + 

; which is 0.667 for the case plotted in Figure 17.21;

(b) The case n = 2 is an upper bound for the other cases.

The above calculations were derived for the pin-ended Ideal Column, but similar deriva-
tions can be conducted for other types of boundary conditions.

1.5.2 E¤ects of Shear Deformation on the Critical Load Calculation

In the classical buckling theory the in�uence of the shear force is neglected by accepting
the valability of the Bernoulli-Euler deformation model. All the buckling cases investi-
gated so far in the present lecture are using this assumption. In the technical literature
the shear force in�uence on the lateral deformation of a beam is known as the Timoshenko
beam model. This mathemathical model , introduced by Stephan Timoshenko, relaxes the
Bernoulli-Euler assumption, the supposed normality of the cross-section on the de�ection
curve after the lateral deformation of the beam appears, and consequently, the slope � of
the defection curve is di¤erent of the rotation angle � characterizing the rotation of the
cross-section.
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Figure 17.33 Shear Deformation

As shown in Figure 17.33, the di¤erence between the two angles, � and �, is the rotation
angle 
 induced by the shear force Vd acting on the cross-section of the deformed shape
con�guration. Consequently, the following angular relation holds:

� = �+ 
 (211)

The rotation angle of the cross-section, �, due exclusively to the action of the bending
moment M(x), is expressed, as before, as:

1

�
=
d�

dx
=
M

EIz
(212)

The rotation angle 
; induced by the shear force Vd; is obtained considering the linear
relation expressed by Hook�s Law :


 =
�

G
(213)

where � and G are the shear stress and material shear modulus in a point of the cross-
section, respectively.

The shear stress � varies on the cross-section accordingly to the Jurawski�s Formula, from
zero value at the exterior �bers to a maximum value at the neutral axis, and in accordance
with equation (213), the shear strain 
 follows a similar distribution The angle 
 is then
approximated by an average value representative of the entire cross-section as:


 =
1

G
� Vd
m � A =

Vd
G � AV

(214)
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where the shear transferring area AV is de�ned as a percentage of the entire cross-section
area A:

AV = m � A (215)

and m is the shear correction factor accounting for the non-uniform distribution of the
shear stress on the cross-section.

The most frequent used shear correction factors m are:

- 0:83 for rectangu-
lar cross-section;

- 0:90 for circular cross-
section;

- 0:606 for thin-walled
tube cross-section;

-
Aweb

A
for I-type cross-

section.

Employing the di¤erential relation between the shear force Vd and the bending moment
M; given by the equilibrium equation (48), the equation (214) is recasted as:


 = � 1

G � AV
� dM
dx

(216)

Substituting equation (216) into equation (211) and considering the validity of the "small

deformation" assumption (� ' dv

dx
), a di¤erential relation is obtained:

dv

dx
= �� 1

G � AV
� dM
dx

(217)

Di¤erentiating again the above obtained equation:

d2v

dx2
=
d�

dx
� 1

G � AV
� d

2M

dx2
(218)

and then substituting equation (212) into it, a di¤erential relation between the de�ection
curve v(x) and the bending moment M(x) is obtained:

d2v

dx2
=
M

EIz
� 1

G � AV
� d

2M

dx2
(219)
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Remark 45 (a) The equation (219) is similar to the second order di¤erential equation
derived in Volume I to calculate the de�ection of the beams subjected to transversal loads.
The di¤erence of the two formulae is the second term of the right side of the equation
(219), term accounting for the in�uence of the shear force on the de�ection;

(b) In order for the di¤erential equation to be solved the variation of the bending moment
M(x) along the entire length l of the beam has to be known, a case valid for determinate
columns only. To extend the validity of the formulation to the undetermined type of
columns a di¤erential relation between loads and de�ection has to be derived.

1.5.2.1 pin-ended Column For the classical case of the Ideal Euler Column, the
pin-ended column, the bending moment M(x) is expressed from the equilibrium as:

M(x) = �P � v(x) (220)

Substituting equation (?? into di¤erential equation (219):

d2v

dx2
=
�P
EIz

� v + P

G � AV
� d

2v

dx2
(221)

and after algebraic manipulations the following di¤erential relation is obtained:

v" +
P

(1� P

G � AV
)EIz

� v = 0 (222)

The di¤erential equation (222) is recasted in a format identical with that equation (21):

v" + k2m � v = 0 (223)

where

k2m =
P

(1� P

G � AV
) � E � Iz

=
P

� � E � Iz
(224)

Remark 46 The di¤erence between the expression of the parameter k2 and k2m used in
equations (21) and (224), respectively, is the correction factor � introducing the in�uence
of the shear force.

� = 1� P

G � AV
(225)
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The solution of the di¤erential equation (223) is:

v(x) = C1 � sin(km � x) + C2 � cos(km � x) (226)

where C1 and C2 are integration constants determined imposing the boundary conditions.

The hinged-pined Ideal Euler Column is characterized by the following boundary condi-
tions

(a) at x = 0 ! v(x = 0) = 0

C1 � sin(km � 0) + C2 � cos(km � 0) = 0 ! C2 = 0 (227)

(b) at x = l ! v(x = l) = 0

C1 � sin(km � l) = 0! (228)

sin(km � l) = 0 and C1 6= 0!

From equation results:

km � l = n � � n = 1; 2; :::and C1 6= 0 (229)

Substituting equation (229) into equation (224) and solving for P the expression of the
critical load Pcr is calculated:

k2m = (
n � �
l
)2 ! Pmcr

(1� Pmcr
G � AV

) � E � Iz
= (

n � �
l
)2 ! (230)

Pmcr = (1� Pmcr
G � AV

) � n
2 � �2 � E � Iz

l2
!

Pmcr = (1� Pmcr
G � AV

) � n2 � PEcr

where

PEcr =
�2 � E � Iz

l2
(231)
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is the critical axial load calculated when the shear force in�uence is neglected.

The expression of the critical load Pmcr is then calculated:

Pmcr =
n2

1 + n2 � PEcr
G � AV

� PEcr =
1

1

n2
+

PEcr
G � AV

� PEcr (232)

The critical normal stress �mcr existing on the cross-section before the bifurcation point is:

�mcr =
Pmcr
A
=

n2

1 + n2 � PEcr
G � AV

� �Ecr =
n2

1 +
n2 � �

2 � E � Iz
l2

G � AV

� �
2 � E
�2

= (233)

=
n2

1 +
n2 � �2 � E � Iz
l2 �G � AV

� �
2 � E
�2

=
n2

1 +
n2 � �2 � E � r2z � A
l2 �G �m � A

� �
2 � E
�2

=

=
n2

1 +
n2 � �2 � 2 � (1 + �) �G

m � l
2

r2z
�G

� �
2 � E
�2

=
n2

1 +
2 � n2 � (1 + �) � �2

m � �2
� �

2 � E
�2

=

=
n2 � �2 � E

�2 � (1 + 2 � n
2 � (1 + �) � �2

m � �2
)

=
�2 � E

�2 � ( 1
n2
+
2 � (1 + �) � �2

m � �2
)

=
�Ecr

1

n2
+
2 � (1 + �) � �2

m � �2

where � is the Poisson�s ratio.

Remark 47 Analyzing equation ( 232) and ( 233) is found that the smallest values, the
engineering interest values, are obtained for n = 1:

Pmcr =
1

1 +
PEcr

G � AV

� PEcr (234)

and

�mcr =
1

1 +
2 � (1 + �) � �2

m � �2
� �Ecr =

�2 � E

�2 � (1 + 2 � (1 + �) � �
2

m � �2
= (235)

=
�2 � E
�2m
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where �m is the transformed slenderness:

�m =

s
�2 � (1 + 2 � (1 + �) � �

2

m � �2
) = � �

s
1 +

2 � (1 + �) � �2

m � �2
(236)

The expression of the critical stress �mcr is limited by the extent of the elastic range to �
0
y:

�mcr =
�2 � E
�2m

� �0y (237)

The slenderness limit �m0 is obtained from the limit of equation (237):

�m0 = � �
s
E

�0y
(238)

Remark 48 (a) The expression (238) indicates that for a slenderness � � �m0 the crit-
ical normal stress �mcr � �0y: For structural steel (E = 200GPa; �0y = 250MPa; � = 0:3)
and aluminium (E = 73GPa; �0y = 410MPa; � = 0:33) the transformed slenderness limit
�m0 are 89 and 42, respectively. Employing relation (236) the corresponding � values are
calculated:

- for steel � = 88:781� 88:856 when m
varies from 0:66 to 1:00; respectively;

- for aluminum � = 41:524� 41:686 when
m varies from 0:66 to 1:00; respectively

The above calculated values indicate a negligible error of
88:781

89
= 0:99754 and

41:524

42
=

0:98867 when the slenderness limit �0 is used instead of �m0:The variation of ratio
�m
�
=r

1 +
2 � (1 + �) � �2

m � �2
for � = 0:3 and m = 0:66 is shown in Figure 17.34.
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Figure 17.34 Ratio
�m
�

Surveying the graph, it can be concluded that for the elastic range limited between slen-

derness values �m0 � � � 200 the ratio �m
�
' 1:00:

(b) The variation of the critical stress �mcr with the slenderness �m is expressed as:

�cr(�) =

(
�y if � < �m0
E��2
�2m0

if � � �m0 (239)

Remark 49 Considering that the ratio
�m
�
' 1:00 the variation of critical normal stress

�mcr(�m) is similar with the critical normal stress �cr(�) shown in Figure 17.7.

(d) The critical load Pmcr ; calculated when the in�uence of the shear force is considered,
is smaller than the critical force PEcr ; calculated neglecting the shear force in�uence:

Pmcr < P
E
cr (240)

For the compact cross-sections discussed above, characterized by with m varying between
0:67 and 1; the critical load Pmcr is well approximated by the critical load Pcr:

Pmcr = �
m
cr � A ' �cr � A = PEcr (241)

The situation changes for the case of built-up cross-sections.

1.5.2.2 Other Rigid End Conditions To obtain expression of critical load Pmcr
pertinent to other types of rigid end conditions, where the function of the bending moment
M(x) is not known in advance, a more involved theoretical approach, some how similar
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to the one used in the absence of the shear force, must be used. The know function of
the transversal load pn(x) has to be used instead of the bending moment M(x):

Two unknown functions, the displacement v(x) and rotation angle of the cross-section
�(x); have to be expressed relatively to the variation of the transversal loading force
pn(x):Because the bending moment is not related any more directly to the second derivative
of the de�ection v(x), bboth functions, v(x) and �(x); are necessary to correctly express
the static and kinematic boundary conditions. Consequently, a system of two di¤erential
equations has to be obtained.

The �rst di¤erential equation of the system is obtained by twice di¤erentiating equation
(212) and then successively employing the equilibrium equations, (47) and (46):

d2

dx2
(
d�

dx
) =

d2

dx2
(
M

E � Iz
)! d3�

dx3
=

1

E � Iz
� d

2M

dx2
! (242)

d3�

dx3
=

1

E � Iz
� d
dx
(V � P � dv

dx
)! d3�

dx3
=

1

E � Iz
� (dV
dx

� P � d
2v

dx2
)!

d3�

dx3
=

1

E � Iz
� (�pn(x)� P �

d2v

dx2
)! E � Iz � �000 + P � v" = �pn(x)

The second di¤erential of the system is obtained by di¤erentiating equation (212) and
then substituting it into equations (217):

d

dx
(
d�

dx
) =

d

dx
(
M

E � Iz
)! d2�

dx2
=

1

E � Iz
� dM
dx

! (243)

dv

dx
= �� 1

G � AV
� dM
dx

! dv

dx
= �� E � Iz

G � AV
� d

2�

dx2
!

E � Iz
G � AV

� �" + v0 � � = 0! E � Iz � �" +G � AV � (v0 � �) = 0

In the absence of the lateral loading pn(x) = 0 the di¤erential equations (242) and
(243) represent a di¤erential homogeneous ordinary system with constant coe¢ cients.
The di¤erential system is recasted as:

�000 +
P

E � Iz
� v" = 0 (244)

�" +
G � AV
E � Iz

� (v0 � �) = 0

The solutions of the di¤erential system (244)are expressed as:
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v(x) = A � exp(� � x) (245)

�(x) = B � exp(� � x)

where �; A and B are integration constants.

The solutions (245) have to verify the di¤erential equations (244) and consequently, by
substituting them back into equations (244), the following system is obtained:

B � �3 � exp(� � x) + P

E � Iz
� A � �2 � exp(� � x) = 0! (246)

(B � � + P

E � Iz
� A) � �2 � exp(� � x) = 0

B � �2 � exp(� � x) + G � AV
E � Iz

� (A � � � exp(� � x)�B � exp(� � x)) = 0!

[B � �2 + G � AV
E � Iz

� (A � � �B)] � exp(� � x)) = 0

and after algebraic manipulations:

(
P

E � Iz
� A+B � �) � �2 � exp(� � x) = 0 (247)

[(
G � AV
E � Iz

� �) � A+ (�2 � G � AV
E � Iz

) �B)] � exp(� � x)) = 0

For the integration constant A and B to have solutions di¤erent than the trivial solution
(A = B = 0) the determinant 
(�) must be zero:


(�) =

264 P

E � Iz
�

G � AV
E � Iz

� � �2 � G � AV
E � Iz

375 = 0 (248)

The characteristic equation of the determinant 
(�) is:

G � P � AV + E � Iz � (G � AV � P ) � �2 = 0 (249)
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Solving equation (249) for �2 an expression identical to expression (224), of k2m; is ob-
tained.

�2 =
G � AV � P

E � Iz � (G � AV � P )
=

P

E � Iz � (1�
P

G � AV
)
= (250)

=
P

E � Iz � �
= k2m

The general solutions for v(x) and �(x) are expressed as follows instead of (245):

v(x) = C1 � sin(km � x) + C2 cos(km � x) + C3 � x+ C4 (251)

and

�(x) = � � C1 � km � cos(km � x)� � � C2 � km � sin(km � x) + C3 (252)

where C1; C2; C3 and C4 are integration constants obtained imposing the boundary con-
ditions at the ends of the column.

The expressions of the de�ection v(x) and rotation angle of the cross-section �(x) �rst,
second and third derivatives are:

v0(x) =
d

dx
v(x) = km � C1 � cos(km � x)� km � C2 � sin(km � x) + C3 (253)

v"(x) =
d2

dx2
v(x) = �k2m � C1 � sin(km � x)� k2m � C2 � cos(km � x) (254)

v000(x) =
d3

dx3
v(x) = �k3m � C1 � cos(km � x) + k3m � C2 � sin(km � x) (255)

�0(x) =
d

dx
�(x) = �� � C1 � k2m � sin(km � x)� � � C2 � k2m � cos(km � x) (256)
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�00(x) =
d2

dx2
�(x) = �� � C1 � k3m � cos(km � x) + � � C2 � k3m � sin(km � x) (257)

�000(x) =
d3

dx3
�(x) = � � C1 � k4m � sin(km � x) + � � C2 � k4m � cos(km � x) (258)

The validity of the solutions (251).and (252).is verify by substituting them back into
equations (244).

The boundary conditions are judge in a similar manner as these when the shear force is
neglected. The novaly consists in the fact that the rotation of the cross-section is the
angle �(x) and not on �(x). They are:

� �xed end v = 0 � = 0 (259)

� pinned end v = 0 M = 0

� free end M = 0 V = 0

� �xed-sliding end � = 0 V = 0

The condition M = 0 implies throught relation (212) �0 = 0; while V = 0 represents, in
accordance to equation (47) a more complicated relation. The shear force V is expressed

as V =
dM

dx
+P�v0 = E�Iz��00+P�v0 = E�Iz�(�00+

P

E � I 0z
�v0) = E�Iz�(�00+��k2m�v0)and

consequently, the end condition V = 0 becomes �00 + � � k2m � v0 = 0. After algebraic
manipulations the �nal expression is k2m�C3 = 0:

To exemplify the application of the theoretical derivation, the case of the �xed-�xed
column, shown in Figure 17.10.b is investigated. The integration constants are obtained
enforcing the following end conditions:

- at point O (x = 0):

v(x = l) = 0! C1 � sin(km � 0) + C2 cos(km � 0) + C3 � 0 + C4 = 0! (260)

! C2 + C4 = 0

�(x = 0) = 0! � � C1 � km � cos(km � 0)� � � C2 � km � sin(km � 0) + C3 = 0!(261)
! � � C1 � km + C3 = 0
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- at point A (x = l):

v(x = l) = 0! C1 � sin(km � l) + C2 � cos(km � l) + C3 � l + C4 = 0 (262)

�(x = l) = 0! � � C1 � km � cos(km � l)� � � C2 � km � sin(km � l) + C3 = 0 (263)

The determinant �(k) is:

�(k) =

2664
0 1 0 1

� � km 0 1 0
sin(km � l) cos(km � l) l 1

� � km � cos(km � l) �� � km � sin(km � l) 1 0

3775 = (264)

= �l � k2m � �2 � sin(km � l) + km � � � cos2(km � l)� 2 � km � � � cos(km � l)
+km� sin

2 kml + km� + km � � � sin2(km � l) + km � � (265)

The resulting characteristic equation is:

�l � k2m � �2 � sin(km � l)� 2 � km � � cos(km � l) + 2 � km � � = 0!
km � � � [2� 2 � cos(km � l)� l � km � � � sin(km � l)] = 0!

2� 2 � cos(km � l)� l � km � � � sin(km � l) = 0 and km � � 6= 0

The solution of the characteristic equation is obtained graphically, by plotting the function
located on the left side of the equation. The plot shown in Figure 17.35 contains a number
of curves corresponding to � = (1; 0:9; 05; 0:3):

Figure 17.35
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From the graph it can be seen that for all � the solutions coincide with:

kml = 2 � � (266)

The �rst critical load Pmcr is calculated from (250) as:

Pmcr = E � Iz � � � k2m = E � Iz � � �
4 � �2
l2

= (267)

=
PEcr

1 +
PEcr
G � Av

where the critical load PEcr is the critical load calculated neglecting the shear force in�u-
ence:

PEcr = E � Iz �
�2

( l
2
)2
= E � Iz �

�2

l2b

and the buckling length lb is:

lb =
l

2
= 0:5 � l (268)

The critical normal stress �mcr is calculated:

�mcr =
Pmcr
A

(269)

Remark 50 (a) The expression (267) of the critical load is mathematically identical to
the expression calculated for the Ideal Euler�s Column (has di¤erent end conditions).
Obviously the expression of the PEcr is di¤erent for each case, depending on the speci�c
buckling length;

(b) Due to the mathematical identity, all the other conclusions reached during the Ideal
Euler�s Column investigation remain valid;

(c) The above conclusions must be checked for individual cases of end restrains.
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1.5.3 Buckling of Columns Subjected to Inclined Loads

In the previous theoretical derivations the axial compressive load P always kept its vertical
direction during the stability loss. Nevertheless, in some cases the compressive force P
rotates during the lateral de�ection taking place at the bifurcation time. To exemplify
this aspect, the case of the �xed-free column subjected to compressive force P passing
through a �xed point C, as shown in Figure17.36.a, is considered. Practically, this case
represents the situation of a stretched cable attached with one end to the cantilever tip
A and the other to the �xed point C.

Figure 17.36 Buckling under Inclined Load

At the bifurcation point, the tip of the cantilever su¤ers a small lateral displacement
�: The main di¤erence from the similar case analyzed before is the fact that the shear

force V at the cantilever tip has a value, P � �
c
, equal to the horizontal projection of

the compressive force P:The integration constants C1; C2; C3 and C4 are obtained by
imposing the boundary conditions at the cantilever ends. They are:

- at the �xed end point O (x = 0):

v(x = 0) = C1 � sin(k � 0)+C2 cos(k � 0)+C3 � 0+C4 = 0! C2+C4 = 0 (270)

�(x = 0) = k �C1 �cos(k �0)�k �C2 � sin(k �0)+C3 = 0! k �C1+C3 = 0 (271)

- at the free end A (x = l):
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�M(x = l) = 0! E � Iz � v"(x = l) = 0! (272)

= �k2 � C1 � sin(k � l)� k2 � C2 � cos(k � l) = 0

�V (x = l) + P � �
c
= 0! (E � Iz � vIII(x = l)) + P � v0(x = l) + P �

�

c
= 0!(273)

! k2 � E � Iz � C3 = P �
�

c
! P � C3 = P �

�

c
! C3 =

�

c

Combining the algebraic equations (270) through (273) an algebraic system of four equa-
tions is obtained:

�(k) =

2664
0 1 0 1
k 0 1 0

�k2 � sin(k � l) �k2 � cos(k � l) 0 0
0 0 1 0

3775
2664
C1
C2
C3
C4

3775 =
26664
0
0
0
�

c

37775 (274)

, Solution is:

2664
� 1
ck
�

1
ck

�
cos kl

sin kl
1
c
�

� 1
ck

�
cos kl

sin kl

3775
The solutions of the algebraic system (274) are:

2664
C1
C2
C3
C4

3775 =
2666666664

� �

c � k
�

c � k � tan(k � l)
�

c

� �

c � k � tan(k � l)

3777777775
= � �

c � k �

2664
1

� tan(k � l)
�k

tan(k � l)

3775 (275)

Substituting the constants into the general solution (57) the expression of lateral dis-
placement v(x) and its superior derivatives are obtained:

v(x) = � �

c � k � sin(k � x) +
�

c � k � tan(k � l) � cos(k � x) +
�

c
� x� �

c � k � tan(k � l) =(276)

= � �

c � k � [sin(k � x)� tan(k � l) � cos(k � x)� k � x+ tan(k � l)]
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�(x) = v0(x) = � �

c � k � [k � cos(k � x) + k � tan(k � l) � sin(k � x)� k] (277)

v"(x) = � �

c � k � [�k
2 � sin(k � x) + k2 � tan(k � l) � cos(k � x)] (278)

v000(x) = � �

c � k � [�k
3 � cos(k � x)� k3 � tan(k � l) � sin(k � x)] (279)

The bending moment M(x) and shear force Vd(x) are:

M(x) = E�Iz�v"(x) = �
�

c � k �E�Iz�[�k
2�sin(k�x)+k2�tan(k�l)�cos(k�x)] (280)

Vd(x) =
dM(x)

dx
= E�Iz�v000(x) = �

�

c � k �E�Iz�[�k
3�cos(k�x)�k3�tan(k�l)�sin(k�x)]

(281)

The lateral displacement v(x = l) has to be equal to the initially considered �: Then, this
condition is expressed as:

� �

c � k � [sin(k � l)� tan(k � l) � cos(k � l)� k � l + tan(k � l)] = � (282)

After algebraic manipulations, the above equation becomes:

tan(k � l)� k � l = �c � k ! tan(k � l) = �c � k + k � l! (283)

! tan(k � l) = k � l � (1� c
l
)!

! tan(k � l)� k � l � (1� c
l
) = 0

Equation (283) is the stability criterion. The functional relation between k � l and c
l
2

[0;1]; represented by equation (283), is graphically depicted in Figure 17.37.
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Figure 17.37

Remark 51 (a) The variation of k�l with the ratio c
l
is a continuous decreasing function.

The k � l value abruptly decreases, almost linearly, from c

l
= 0 through

c

l
= 3:6; followed

by a slow variation and then, from
c

l
= 10 tends asymptotically towards the value 1:5709:

(b) for
c

l
= 0 the equation (283) reduces to tan(k � l) � k � l = 0, the characteristic

equation of the �xed-pined column, and consequently k � l = 4:493:The corresponding
buckling length is lb = 0:7 � l;

(c) for
c

l
= 3:6 the solution, numerically obtained, is k � l = 1:783;

(d) for
c

l
= 10 the solution, numerically obtained, is k � l = 1:639 5;

(e) for
c

l
= 1 the solutions k � l = 1:5709; a value corresponding to �xed-free condition

(lb = 2 � l).

The buckling load Pcr and length lb are both bounded:

0:25 � PEcr � Pcr � 2:07 � PEcr (284)

0:7 � l � lb � 2 � l (285)

Remark 52 If the �xed point C is located below the tip of the cantilever an increase of
the critical load Pcr in comparison to the critical load of the similar �xed-free column
0:25 �PEcr is recorded. The horizontal component plays the role of a horizontal spring and
helps lowering the buckling length from 2 � l towards 0:7 � l;
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If the point C is located above the cantilever tip A; as shown in Figure 17.36.b, the
direction of the force P horizontal projection changes the direction and the equation
(283) transforms into:

tan(k � l)� k � l � (1 + c
l
) = 0 (286)

The graphical representation of k�l as function of c
l
the ratio, equation (286), is illustrated

in Figure 17.38.

Figure 17.38

Remark 53 If the �xed point C is located above the tip of the cantilever a decrease of
the critical load Pcr in comparison to the critical load of the similar �xed-free column
0:25 � PEcr is noticed. The horizontal component increases the lateral deformation of the
column, having an averse result on the buckling. For

c

l
= 1 the value of k � l = 1:165 6,

which corresponds to a buckling length lb ' 2:7 � l and critical load Pcr = 0:139 �PEcr :

The buckling load Pcr and length lb are both upper bounded:

Pcr � 0:25 � PEcr (287)

lb � 0:7 � l (288)

1.5.4 Lateral Disturbing Loads

The assumption of the absence of the transversal, lateral, load considered until now it is
just a theoretical idealization. The real columns are always subjected to lateral loads or
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end applied moments caused by slightly eccentric application of the compressive force P =
constant. The column under consideration is again the Euler Idealized Column loaded,
this time, with a transversal distributed load pn(x) and two concentrated moments, MO

andMA, acting at both ends of the column, in points O and A, respectively. The column
and the loading are shown in Figure 17.39.

Figure 17.39 Lateral Disturbing Loads

Due to the existence of the lateral load pn(x); the de�ection curve v(x), the solution
of the di¤erential equation (52),.is calculated accordingly to the general equation (426).
This is not a trivial task, but the solution can be found using the methods of the general
theory of ordinary di¤erential equations. Where the analytical solution is impossible
always the numerical solution is possible. For the case in point, a trapezoidal variation
of the transversal load is considered. pn(x):This type of loading will serve the poupose
to verify, for example, if the of Superimposition Principle remain valid in the presence of
the compressive force. The load under consideration is expressed:

pn(x) = qA +
qO � qA
l

(l � x) (289)

If the general solution v(x) = v0(x) + vp(x) is replaced in the equation (52), a new form
of the di¤erential equation is obtained:

[
d4

dx4
v0(x) + k

2 � d
2

dx2
v0(x)] + [

d4

dx4
vp(x) + k

2 � d
2

dx2
vp(x) +

pn(x)

E � Iz
] = 0 (290)

The �rst right parenthesis is similar to the homogeneous di¤erential equation previously
solved and has as solution an expression similar to relation (57):

v0(x) = C1 � sin(k � x) + C2 cos(k � x) + C3 � x+ C4 (291)
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with the integration constants, C1; C2; C3; and C4; remained to be determined by imposing
the boundary conditions. The solution vp(x) for the second right parenthesis has to be
found. If a supplementary condition is imposed on the solution vp(x) :

d4

dx4
vp(x) = 0 (292)

then the expression of the particular solution is obtained by simple integration of:

k2 � d
2

dx2
vp(x) +

pn(x)

E � Iz
= 0 (293)

For the proposed load (289) the expression of the particular solution vp(x) is:

vp(x) = �
Z Z

pn(x)

k2 � E � Iz
dxdx (294)

! vp(x) = �
1

k2 � E � Iz

Z Z
[qA +

qO � qA
l

(l � x)]dxdx

! vp(x) = �
1

k2 � E � Iz

Z Z
(qO �

�q

l
x)dxdx

! vp(x) = �
1

k2 � E � Iz
(
qO
2
x2 � �q

6l
x3)

where �q = qO � qA:

Remark 54 (a)The solution is a polynomial of third degree and consequently the condi-
tion (292) is veri�ed. This condition can be verify only for polynomials of third order and
this limitation considerably reduces the application of this modality of solving the general
di¤erential equation (52). For our study this method does the job

(b) the particular solution is obtained only by the unde�ned integrals missing the two
generally required integration constants. Introducing these constants the total number
will become six and there are available only four boundary conditions. For this reason the
two additional integration constants are omitted.

Combining the solutions (291) and (294) the general solution v(x) is obtained:

v(x) = C1 � sin(k �x)+C2 cos(k �x)+C3 �x+C4�
1

k2 � E � Iz
(
qO
2
x2� �q

6l
x3) (295)
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The superior derivatives:

v0(x) =
d

dx
v(x) = k�C1�cos(k�x)�k�C2�sin(k�x)+C3�

1

k2 � E � Iz
(qOx�

�q

2l
x2) (296)

v"(x) =
d2

dx2
v(x) = �k2�C1�sin(k�x)�k2�C2�cos(k�x)�

1

k2 � E � Iz
(qO�

�q

l
x) (297)

v000(x) =
d3

dx3
v(x) = �k3 �C1 � cos(k � x) + k3 �C2 � sin(k � x) +

1

k2 � E � Iz
�q

l
(298)

The boundary conditions are:

- at the pined end O (x = 0):

v(x = 0) = C1 � sin(k � 0)+C2 cos(k � 0)+C3 � 0+C4+(0) = 0! C2+C4 = 0 (299)

M(x = 0) = �MO ! E � Iz � v00(x = 0) = �MO (300)

! E � Iz � [�k2 � C1 � sin(k � 0)� k2 � C2 � cos(k � 0)�
1

k2 � E � Iz
(qO �

�q

l
0)] = �MO

! �k2 � C1 � sin(k � 0)� k2 � C2 � cos(k � 0)�
1

k2 � E � Iz
qO = �

MO

E � Iz
! k2 � sin(k � 0) � C1 + k2 � cos(k � 0) � C2 =

MO

E � Iz
� 1

k2 � E � Iz
qO

! k2 � sin(k � 0) � C1 + k2 � cos(k � 0) � C2 =
1

E � Iz
(MO �

qO
k2
)

! k2 � C2 =
1

E � Iz
(MO �

qO
k2
)

- at the pinned end A (x = l):

v(x = l) = C1 � sin(k � l) + C2 cos(k � l) + C3 � l + C4 �
1

k2 � E � Iz
(
qO
2
l2 � �q

6l
l3) = 0(301)

! C1 � sin(k � l) + C2 cos(k � l) + C3 � l + C4 =
1

k2 � E � Iz
(
qO
2
l2 � �q

6
l2)

! C1 � sin(k � l) + C2 cos(k � l) + C3 � l + C4 =
l2

2 � k2 � E � Iz
(qO �

�q

3
)

! C1 � sin(k � l) + C2 cos(k � l) + C3 � l + C4 =
l2

6 � k2 � E � Iz
(2qO + qA)
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M(x = l) = �MA ! E � Iz � v00(x = l) = �MA ! (302)

! E � Iz � [�k2 � C1 � sin(k � l)� k2 � C2 � cos(k � l)�
1

k2 � E � Iz
(qO �

�q

l
l)] = �MA

! �k2 � C1 � sin(k � l)� k2 � C2 � cos(k � l)�
1

k2 � E � Iz
(qO ��q) = �

MA

E � Iz
! �k2 � C1 � sin(k � l)� k2 � C2 � cos(k � l) = �

MA

E � Iz
+

1

k2 � E � Iz
(qO � qO + qA)

! k2 � C1 � sin(k � l) + k2 � C2 � cos(k � l) =
MA

E � Iz
� qA
k2 � E � Iz

! k2 � C1 � sin(k � l) + k2 � C2 � cos(k � l) =
1

E � Iz
(MA �

qA
k2
)

The equations (299) through (302) represent a algebraic system of four equations with
four unknowns, the integration constants C1; C2; C3; and C4. The matricial representation
of the system is:

2664
0 1 0 1
0 k2 0 0

sin(k � l) cos(k � l) l 1
k2 � sin(k � l) k2 � cos(k � l) 0 0

3775
2664
C1
C2
C3
C4

3775 =
266666664

0
1

E � Iz
(MO �

qO
k2
)

l2

6 � k2 � E � Iz
(2qO + qA)

1

E � Iz
(MA �

qA
k2
)

377777775
(303)

Solving the system (??) the four integration constants are obtained as:

2664
C1
C2
C3
C4

3775 = 1

k4EIz

2666664
� 1

sin kl
(qA � cos kl � qO � k2MA + k

2 cos kl �MO)

� (qO � k2MO)
1

6l
((6 + k2l2) qA � (6� 2k2l2) qO � 6k2MA + 6k

2MO)

(qO � k2MO)

3777775 (304)

Replacing the integration constants (304) back into relations (295) and (297) the de�ec-
tion curve v(x) and bending moment M(x) are calculated:
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v(x) =
1

k4EIz
((�sin kx

sin kl
+
x

6l

�
6 + k2l2

�
) � qA + (

sin kx

sin kl
cos kl � cos kx� x

6l

�
6� 2k2l2

�
+ 1) � qO + (305)

+(
sin kx

sin kl
k2 � x

l
k2) �MA + (�

sin kx

sin kl
k2 cos kl + k2 cos kx+

x

l
k2 � k2) �MO � k2x2(

qO
2
� qO � qA

6l
x))

=
1

k4EIz
((�sin kx

sin kl
+
x

6l

�
6 + k2l2

�
� k

2

6l
x3) � qA + (

sin kx

sin kl
cos kl � cos kx� x

6l

�
6� 2k2l2

�
+ 1� k

2

2
x2(1� 1

3l
x)) � qO +

+(
sin kx

sin kl
k2 � x

l
k2) �MA + (�

sin kx

sin kl
k2 cos kl + k2 cos kx+

x

l
k2 � k2) �MO)

M(x) =
1

k4
((k2

sin kx

sin kl
) � qA + (�k2

sin kx

sin kl
cos kl + k2 cos kx) � qO + (�k4

sin kx

sin kl
) �MA +(306)

+(k4
sin kx

sin kl
cos kl � k4 cos kx) �MO � (k2qO � k2x

qO � qA
l

))

=
1

k4
((k2

sin kx

sin kl
� k

2

l
x) � qA + (�k2

sin kx

sin kl
cos kl + k2 cos kx� k2 + k

2

l
x) � qO +

+(�k4 sin kx
sin kl

) �MA + (k
4 sin kx

sin kl
cos kl � k4 cos kx) �MO)

The veri�cation of the boundary conditions is conducted by evaluating the expressions
(305) and (306) successively for x = 0 and x = l:

The above derived expressions of the de�ection curve and bending moment are used in
the following pages to analyse a series of interesting phenomenon directly related to the
structural engineering practice.

1.5.4.1 Lateral constant load If only a lateral constant load q; acts on a Idealized
Euler Column the above calculated (305) and (306) can be particularized (qA = qO = q
and MA =MO = 0) as follows:

v(x) = � q

2k4EIz sin kl

�
2 cos kx sin kl � 2 cos kl sin kx� 2 sin kl + 2 sin kx+ k2x2 sin kl � k2lx sin kl

�
(307)

M(x) =
q

k2
(cos kx� 1 + 1� cos kl

sin kl
sin kx) (308)

=
ql2

8

8

k2l2
(cos kx� 1 + 1� cos kl

sin kl
sin kx)

= M0
max

8

k2l2
(cos kx� 1 + 1� cos kl

sin kl
sin kx)
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where M0
max =

ql2

8
is the maximum bending moment calculated in the absence of the

compressive force.

The location of the maximum bending moment, x =
l

2
; is determined calculating the

point of stationarity of the bending moment M(x) expression (308):

d

dx
(cos kx� 1 + 1� cos kl

sin kl
sin kx) = 0 (309)

Substituting the location x =
l

2
into the bending moment expression (308), the maximum

value of the bending moment is calculated:

Mmax = M(x =
l

2
) =M

0
max

8

k2l2
(cos k

l

2
� 1 + 1� cos kl

sin kl
sin k

l

2
) (310)

= M0
max

8

(�

r
P

PE
)2
(cos

�

2

r
P

PE
� 1 +

1� cos �
r
P

PE

sin �

r
P

PE

sin
�

2

r
P

PE
)

where kl = �

r
P

PE
and PE =

�2EIz
l2

:

If transformation y =

r
P

PE
is applied the expression (310) becomes:

Mmax = M0
max

8

(�y)2
(cos

�

2
y � 1 + 1� cos �y

sin �y
sin
�

2
y) (311)

= M0
max

8

(�y)2

1� cos(�
2
y)

cos(
�

2
y)

The variation of the ratio
Mmax

M0
max

with
P

PE
is illustrated in Figure 17.40.
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Figure 17.40

In the modern design codes the maximum bending moment Mmax is represented in a
slightly di¤erent format, which is easily generalized for other loading cases and boundary
conditions:

Mmax =M
0
max

Cm

1� P

PE

(312)

where the coe¢ cient Cm is called magni�cation factor :

Cm = (1� y2)
8

(�y)2

1� cos(�
2
y)

cos(
�

2
y)

(313)

Obviously, the magni�cation factor Cm is also dependent on the ratio
P

PE
:Its variation

with ratio
P

PE
is pictured in Figure 17.41.
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Figure 17.41 CmVariation

Remark (a)The relation (311) indicates a continuous increased of the initial value of

the maximum bending moment M0
max =

ql2

8
for

P

PE
2 (0; 1): When the compressive

forceP = PE the maximum bending moment is 1:

(b) as it shown by the graph pictured in Figure 17.41, the magni�cation factor Cm varies
slightly around the value 1; and consequently, the maximum bending moment can be
represented as:

Mmax =M
0
max

1

1� P

PE

(314)

1.5.4.2 Existing End Moments MO and MA Proceeding similar as in the previous
section, the general relations (305) and (306) are particularized by setting qO = qA = 0
as:

v(x) =
1

k2EIz

��
1

sin kl
sin kx� 1

l
x

�
MA +

�
cos kx� 1 + 1

l
x� cos kl

sin kl
sin kx

�
MO

�
(315)

M(x) = � 1

sin kl
sin kx �MA +

�
cos kl

sin kl
sin kx� cos kx

�
MO (316)

The location of the cross-section x; where the bending moment M(x) realizes its maxi-
mum, is obtained by solving:

d

dx
M(x) = 0 (317)

! d

dx
(� 1

sin kl
sin kx �MA + (

cos kl

sin kl
sin kx� cos kx)MO) = 0

! � 1

sin kl
cos kx �MA + (

cos kl

sin kl
cos kx+ sin kx)MO = 0

! � 1

sin kl
�MA + (

cos kl

sin kl
+ tan kx)MO = 0

! tan kx =
1

sin kl
� MA

MO

� cos kl
sin kl

! tan kx =
1

sin kl
� �� cos kl

sin kl
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where � =
MA

MO

is the ratio of the end moments.

Expressing sin kx and cos kx as functions of tan kx and substituting them into the bending
moment equation (316), the maximum bending moment is calculated as:

Mmax = � 1

sin kl

tan kxp
1 + tan2 kx

�MA + (
cos kl

sin kl

tan kxp
1 + tan2 kx

� 1p
1 + tan2 kx

)MO =(318)

= � tan kxp
1 + tan2 kx

MO(
1

sin kl
� MA

MO

� cos kl
sin kl

+
1

tan kx
) =

= � tan kxp
1 + tan2 kx

MO(tan kx+
1

tan kx
) = � tan2 kxp

1 + tan2 kx
MO(1 +

1

tan2 kx
) =

= �MO

p
1 + tan2 kx

Substituting �rst equation (317)and further kl = �

r
P

PE
= �

p
� into (318) the maximum

bending moment Mmax becomes:

Mmax = �MO

s
1 + (

1

sin �
p
�
� �� cos �

p
�

sin �
p
�
)2 (319)

where is the ratio � =
P

PE
:

The maximum bending moment Mmax is then expressed using a magni�cation factor Cm
as:

Mmax =MO
Cm

1� P

PE

(320)

where the magni�cation factor Cm is:

Cm = (1� P

PE
)

s
1 + (

1

sin �
p
�
� �� cos �

p
�

sin �
p
�
)2 = (321)

= (1� �)

s
1 + (

1

sin �
p
�
� �� cos �

p
�

sin �
p
�
)2
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The variation of the magni�cation factor depends on the two important ratios � =
MA

MO

and � =
P

PE
:Considering that MO �MA the limits of the ratios are established as:

�1 � � � 1 (322)

and

0 < � < 1 (323)

Remark 55 The maximum bending momentMmax; (320) tends to1 as � =
P

PE
! 1and

consequently, the ratio is limited to � < 1: This case corresponds to loss of stability.

The variation of the magni�cation factor Cm for various ratios �1 � � � 1 and � 2
[0:1; 0:3; 0:5; 0:7; 0:9] is illustrated in Figure 17.42.

Figure 17.42 CmVariation

1.5.4.3 Eccentric Loading. The Secant Formula In this section a new situation
is considered. The ideal pinned-ended column is subjected to an eccentric concentrated
compressive force P acting at both ends O and A as shown in Figure 17.43.a. The
eccentricity e of the force P is measured from vertical axis x of the column. The eccen-
trically applied force P is replaced by a centric compressive force P and two concentrated
moments of equal magnitude acting at both ends O and A of the column, as shown in
Figure17.9.b.
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Figure 17.43 Eccentric Loaded Column

In the absence of a transversal distributed force, pn(x) = 0, the lateral de�ection v(x) and
the bending momentM(x) obtained in the previously section, equations (315) and (315),
remain valid and are employed herein..The end moments MO and MA are expressed:

MO = �P � e (324)

MA = �P � e (325)

and consequently the ratio � becomes:

� =
MA

MO

= 1 (326)

Substituting (324) and (325) into (??) the de�ective curve v(x) is:

v(x) = � Pe

k2EIz

��
1

sin kl
sin kx� 1

l
x

�
+

�
cos kx� 1 + 1

l
x� cos kl

sin kl
sin kx

��
=

= �Pe
P

�
1

sin kl
sin kx� 1

l
x+ cos kx� 1 + 1

l
x� cos kl

sin kl
sin kx

�
=

= �e
�
1� cos kl
sin kl

sin kx+ cos kx� 1
�
=

= �e(tan kl
2
sin kx+ cos kx� 1)
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The location x of the maximum of the displacement function v(x); is found at the middle
of the column length l:

d

dx
v(x) = 0! tan(

kl

2
) � cos(k � x)� sin(k � x) = 0 (327)

! x =
l

2

and consequently:

vmax = �e � [tan(kl
2
) � sin(k � l

2
) + cos(k � l

2
)� 1] = (328)

= �e � [sec(kl
2
)� 1]

A di¤erent format of equation (328) is obtained by substituting the product k � l =

� �
r
P

Pcr
:

vmax = �e � [sec(
�

2

r
P

Pcr
)� 1] (329)

The load de�ection diagram representing the variation of the ratio
P

Pcr
function of the

maximum displacement vmax is illustrated in Figure 17.44 for few eccentricity values
e 2 [0; 0:1; 0:5; 1]:

Figure 17.44 Load-De�ection Diagram
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Remark 56 Analyzing the equation (329), representing the variation of the maximum
displacementvmax of the pinned-ended beam-column, few interesting conclusion can be
emphasized:

(a) unlike the case when e = 0 of the ideal Euler column which de�ects laterally only the
axial compressive force equals or is greater than the critical load P > Pcr; the similar
beam-colum de�ects for any value of P accordingly to expression (329);

(b)when P = 0 then sec(0) = 1 and vmax = 0 indi¤erent the value of e;

(c) when P ! Pcr then sec(�2 ) =1 and vmax !1 indi¤erent the value of e;

(d) the transversal de�ection vmax is a non-linear function of P and linear function of e;

Particularizing equation (317) for � = 1 the location of the maximum bending moment
Mmax is located at middle of the column length l:

tan kx =
1

sin kl
� cos kl
sin kl

= tan
k � l
2

(330)

! kx =
k � l
2

! x =
l

2

Substituting equations (324) (330) into equation(318) the maximum bending moment
Mmax is calculated:

Mmax = P � e �

s
1 +

�
tan

k � l
2

�2
= (331)

= P � e � sec(k � l
2
)

The maximum normal stress �maxx pertinent to the critical cross-section is obtained:

�maxx =
P

A
+
Mmax

Iz
� ymax =

P

A
+
P � e � sec(k � l

2
)

A � r2z
� ymax = (332)

=
P

A
� [1 + e � ymax

r2z
� sec(k � l

2
)]

89



Substituting equation (??) into equation (332) the Secant Formula is obtained:

�maxx =
P

A
� [1 + e � ymax

r2z
� sec(�

2

r
P

Pcr
)] =

P

A
� [1 + e � ymax

r2z
� sec( l

2

r
P

E � Iz
)] = (333)

=
P

A
� [1 + e � ymax

r2z
� sec( l

2

s
P

E � A � r2z
)] =

P

A
� [1 + e � ymax

r2z
� sec( l

2 � rz
�
r

P

E � A)] =

= �c � [1 +
e � ymax
r2z

� sec(�
2
�
r
�c
E
)]

where � =
l

rz
and �c =

P

A
are the slenderness of the column and the compressive normal

stress for zero eccentricity (e = 0), respectively:

Considering that the beam-column member is made of structural steel, characterized by
an elastic modulus E = 200GPa and �0y = 250MPa;and the normal stress �

max
x in the

critical cross-section reaches the proportionality limit value �0y then:

�maxx = �0y

! �c � [1 +
e � ymax
r2z

� sec(�
2
�
r
�c
E
)] = �0y

The ratio
�c
�0y
is plotted in Figure 17.45 function of the slenderness � 2 [0; 200] and ratio

� =
e � ymax
r2z

2 [0; 0:1; 0:5; 1; 2],respectively, .

Figure 17.45 Variation of
�c
�0y
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Remark 57 (a) The Euler critical stress represents an upper-bound for the secant for-
mula results and consequently:

�maxx < �cr

(b) The Secant Formula represents a non-linear relation and the Superposition Principle
does not apply;

(c) The Secant Formula applies to pin-ended ideal columns only, but similar expressions
can be developed. This formula can be extended directly to the "cantilevered" columns by
replacing the buckling length l with 2l. The direct extension of the Secant Formula is not
generally valid.

1.5.5 Large De�ection

In Lecture 7 of the volume I, the relation the between the cross-sectional bending moment
M(x) and the curvature k(x) is established:

k(x) =
1

�(x)
=
M(x)

E � Iz
(334)

where E � Iz and �(x) are the bending rigidity of the beam-column and the radius of
curvature, respectively.

The geometrical di¤erential expression, obtained at Di¤erential Geometry, relating the
cross-sectional transversal de�ection v(x) to the curvature k(x) is:

k(x) =

d2v

dx2

(1 + (
dv

dx
)2)

3

2

=
v00

(1 + (v0)2)

3

2

(335)

Combining the above two relations, (334) and (335), a new di¤erential relation between
the cross-sectional bending moment M(x) and the de�ection curve v(x) is obtained:

M(x) = E � Iz � v00 �
�
1 + (v0)2

��3
2 (336)

If the expression contained between the parenthesis located at the right-side of equation
(336) is expanded in a Taylor series, the cross-sectional bending momentM(x) becomes:
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M(x) = E � Iz � v00 �
�
1� 3

2
(v0)2 +

15

8
(v0)4 � 35

16
(v0)6 + ::::

�
(337)

The basic assumption 4, extensively utilized in all previous sections, is mathematically
expressed by:

M(x) ' E � Iz � v00 (338)

a relation resulting from the linearization of the expression (337).

The main scope of this section is to evaluate the error introduced in the calculation of
the critical axial force sustained by a column when the linearized expression (338) is used
instead of the exact expression (336).

A �rst indication of the error introduced in the evaluation of the cross-sectional bending

momentM(x) by linearization is obtained by plotting the variation of (1 + (v0)2)
�
3

2 with
�rst derivative of the de�ection v0(x): Additionally, di¤erent degrees of approximation
o¤ered by the Taylor series are superimposed on the graph. This suggestive evaluation is
illustrated in Figure 17.46,

Figure 17.46 Degree of Approximation of (1 + (v0)2)
�
3

2

Remark 58 It is evident from the graph that the approximation is very good for the most
simple approximation function 1� 3

2
(v0)2 until v0(x) = 0:25: The error is evaluated in the

following table:
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Figure 2: Figure 17.47 Pin-Ended Column - Large Deformation

Case v0(x) (1 + (v0)2)
�
3

2 1� 3
2
(v0)2 % Error Obs

1 0:05 0:996 26 0:996 25 1:0038� 10�3 < 1%
2 0:01 0:999 85 0:999 85 0:0 < 1%
3 0:02 0:999 99 0:999 4 5:9001� 10�2 < 1%
4 0:1 0:985 19 0:985 1:9286� 10�2 < 1%
5 0:13 0:975 18 0:974 65 5:4349� 10�2 < 1%
6 0:15 0:967 17 0:966 25 9:512 3� 10�2 < 1%
7 0:2 0:942 87 0:94 3:0439� 10�1 < 1%
8 0:25 0:91308 0:906 25 0:748 02 < 1%
9 0:3 0:878 74 0:865 1:5636 > 1%

For v0(x) � 0:25; corresponding to an angle of 14�; the error obtained is less than 1%:

For a complete evaluation of the error induced by linearization the classical pin-ended
column, shown in Figure 17.47, is reanalyzed.

The equilibrium equation (18) is re-written using equation (334) as:

M(x) + P � v(x) = 0! (339)
E � Iz
�(x)

+ P � v(x) = 0

Substituting the geometrical expression of the radius of curvature �(x) =
ds

d�
into equation

(339) an equilibrium equation containing two unknown functions, � and v, is obtained:

E � Iz �
d�

ds
+ P � v = 0 (340)
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where � is the rotation angle of the cross-section after the buckling deformation.

Remark 59 The cross-sectional bending moment is expressed as:

M(s) = E � Iz �
d�

ds
= E � Iz � �0 (341)

Di¤erentiating equation (340) again about variable s, the location of the cross-section
measured from the end O (s = 0) on the de�ection curve:

E � Iz �
d2�

ds2
+ P � dv

ds
= 0 (342)

From Figure 17.101, is observed that geometrically the derivative
dv

ds
= sin � and accord-

ingly, the di¤erential equation (342) is re-written as:

�00 + k2 � sin � = 0 (343)

where k2 =
P

E � Iz
:

The equation (343) is a second order non-linear di¤erential equation with constant co-
e¢ cients. In 1859, Kirchho¤ found the solution and notice the straiking mathematical
similarity with the di¤erential equation governing large oscillations of a pendulum. For
this reason, in 1927, Love called the stability problem of the pin-ended column as the
kinetic analogy of column.

Conclusion 60 If the approximation sin � ' � � 1
6
�3 + 1

120
�5 + :: is considered and only

the �rst term is retained, equation (343) is transformed by linearization into previously
obtained equation (21).

First, multiplying by �0 equation (343) and then, recognizing the di¤erential identities

�0 ��00 = 1

2
�((�0)2)0 and �0 �sin � = �0 �sin �

2
�cos �

2
=

 �
sin
�

2

�2!0
; the above di¤erential

equation is recast as:

1

2
� ((�0)2)0 + 2 � k2 �

 �
sin
�

2

�2!0
= 0! (344) 

1

2
� (�0)2 + 2 � k2 �

�
sin
�

2

�2!0
= 0
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Integrating equation (344) the following di¤erential equation is obtained:

1

4 � k2 � (�
0)2 = �

�
sin
�

2

�2
+ c2 (345)

where c is an integration constant determined using the initial conditions at end O:

�(s = 0) = �0 6= 0 (346)

and

M(s = 0) = 0! (347)

E � Iz �
1

�(s = 0)
= 0! E � Iz � �00 = 0!

! �00 = 0

The equation (345) is valid for any s including s = 0 and applying the boundary conditions
(346) and (347) the constant c is calculated function of the initial rotation �0:

1

4 � k2 � (�
0
0)
2 = �

�
sin
�0
2

�2
+ c2 ! (348)

0 = �
�
sin
�0
2

�2
+ c2 !

c = � sin �0
2

Replacing c into (345):

1

4 � k2 � (�
0)2 = �

�
sin
�

2

�2
+

�
sin
�0
2

�2
(349)

and consequently,
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�0 = �2 � k �

s�
sin
�0
2

�2
�
�
sin
�

2

�2
! (350)

d�

ds
= �2 � k �

s�
sin
�0
2

�2
�
�
sin
�

2

�2
!

ds = � d�

2 � k �

s�
sin
�0
2

�2
�
�
sin
�

2

�2

where � indicates that the deformation can be positive or negative.

Considered the assumption of the column inextensibility (the original length l is preserved

after the deformation) and the deformation is symmetric (�(s =
l

2
) = 0) the following

equality can be written:

l = 2 �

l

2Z
0

ds = �1
k

0Z
�0

d�s�
sin
�0
2

�2
�
�
sin
�

2

�2 = (351)

=
1

k
�

�0Z
0

d�s�
sin
�0
2

�2
�
�
sin
�

2

�2

Considering the following variable change

sin
�

2
= c � sin� = sin �0

2
� sin� (352)

one obtains by implicit di¤erentiation:

1

2
� cos �

2
� d�
d�

= sin
�0
2
� cos�! (353)

d� = 2 �
sin
�0
2
� cos�

cos
�

2

� d�
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Replacing (352) and (353) into (351):

l =
1

k
�

�

2Z
0

2 �
sin
�0
2
� cos�

cos
�

2s�
sin
�0
2

�2
�
�
sin
�0
2
� sin�

�2 � d� = 2

k
�

�

2Z
0

sin
�0
2
� cos�

cos
�

2
� sin �0

2

q
1� (sin�)2

� d� =(354)

=
2

k
�

�

2Z
0

sin
�0
2
� cos�

cos
�

2
� sin �0

2
� cos�

� d� = 2

k
�

�

2Z
0

1

cos
�

2

� d� = 2

k
�

�

2Z
0

1s
1�

�
sin
�0
2
� sin�

�2 � d�

where the integration limits are obtained from (352): for � = 0! sin� =
sin
�

2

sin
�0
2

= 0!

� = 0 and for � = �0 ! sin� =
sin
�0
2

sin
�0
2

= 1! � =
�

2
:

From equation (354) an integral relation between the compressive force P and the initial

rotation �0 is obtained by replacing k =
�

l
�
r
P

PE
:

k =
2

l
�

�

2Z
0

1s
1�

�
sin
�0
2
� sin�

�2 � d�! (355)

�

l
�
r
P

PE
=

2

l
�

�

2Z
0

1s
1�

�
sin
�0
2
� sin�

�2 � d�!

�

2
�
r
P

PE
=

�

2Z
0

1s
1�

�
sin
�0
2
� sin�

�2 � d�
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where PE =
�2 � E � Iz

l2
:

The left-side of the equation (354) is called the complete elliptic integral of �rst king and
obviously depends on �0: If the integrated function of the left-sided integral is expanded
into a Taylor series

1s
1�

�
sin
�0
2
� sin�

�2 '
 
1 +

1

2

�
sin
�0
2
sin�

�2
+ :::

!
(356)

and only the �rst to terms are retained the equation (355) becomes:

�

2
�
r
P

PE
'

�

2Z
0

 
1 +

1

2

�
sin
�0
2
sin�

�2!
d�! (357)

�

2
�
r
P

PE
'

�

2Z
0

d�+
1

2
�
�
sin
�0
2

�2
�

�

2Z
0

(sin�)2 d�

and then, it can be easily integrated as:

�

2
�
r
P

PE
' �

2
+
1

2
�
�
sin
�0
2

�2
� �
4
! (358)

P ' PE �
"
1 +

1

2
�
�
sin
�0
2

�2#

If again the
�
sin
�0
2

�2
is expanded in a Taylor series

�
sin
�0
2

�2
=
1

4
�20 �

1

48
�40 +

1

1440
�60 + :::

and only the �rst three terms are retained:

98



P ' PE �
�
1 +

1

8
�20 �

1

96
�40 +

1

2880
�60

�
(359)

As before, the graphical representation of relation (359) is a very expressive indicator

of the approximation made. The variation of ratio
P

PE
with �0, measured in degrees, is

illustrated in Figure 17.48.

Figure 17.48
P

PE
Variation

Conclusion 61 It can be visualized from the graph that for rotation angles �0 � 17�

P � 1:1 � PE (360)

and consequently, it can be concluded that for this range, covering majority of practical
applications, the error introduced by the utilization of the small deformation assumption
(basic assumption 4) is acceptable.

To complete the analysis of the large deformation in�uence two important geometrical
characteristics are obtained and analyzed: the maximum lateral de�ection vmax and the
total shortening of the column �:

The maximum lateral de�ection vmax is obtained by integration:

vmax =

l

2Z
0

dv (361)
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Knowingly that:

dv = sin � � ds (362)

and replacing ds with relation (350) the maximum de�ection vmax is calculated:

vmax =

l

2Z
0

dv = �
0Z

�0

sin � � d�

2 � k �

s�
sin
�0
2

�2
�
�
sin
�

2

�2 = (363)

= �
0Z

�0

2 � sin �
2
� cos �

2
� d�

2 � k �

s�
sin
�0
2

�2
�
�
sin
�

2

�2 =

=

�0Z
0

2 � sin �
2
� cos �

2
� d�

2 � k �

s�
sin
�0
2

�2
�
�
sin
�

2

�2

The variable change between � and � is made by substituting equation (352) and (353)
into (363):

vmax =

�

2Z
0

sin
�0
2
� sin� � cos �

2
�

2 �
sin
�0
2
� cos�

cos
�

2

� d�

k �

s�
sin
�0
2

�2
�
�
sin
�0
2
� sin�

�2 = (364)

=
2

k
� sin �0

2
�

�

2Z
0

sin� � cos� � d�q
1� (sin�)2

=
2

k
� sin �0

2
=
2 � l
�
� sin �0

2
�
r
PE
P

Expanding sin
�0
2
the in Taylor series and retaining the only �rst term the �rst approxi-

mation for vmax is obtained:
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Figure 3: Figure 17.49 vmax

vmax =
2 � l
�
�
r
PE
P
�
�
�0
2
� 1
6
(
�0
2
)3 + ::

�
' l

�
�
r
PE
P
� �0 (365)

A graphical comparison of vmax provided by the exact relation (364) and approximation

(365) is illustrated in Figure 17.49 for
P

PE
2 [0:1; 0:5; 0:9]:

Conclusion 62 The value of vmax obtained using the approximation (365) confers a good
con�dence for �0 � 40�:

From equation (364) the axial compressive force P is calculated by replacing �0 with vmax:

P ' PE �
�
1 +

1

8
�20

�
' PE �

0BB@1 + 18
0BB@ vmax

l

�
�
r
PE
P

1CCA
21CCA! (366)

P

PE
' 1 +

�2

8 � l2 �
P

PE
� v2max !

P

PE
� (1� �2

8 � l2 � v
2
max) ' 1!

P ' PE �
1

1� �2

8 � l2 � v
2
max

! P ' PE �
�
1 +

�2

8 � l2 � v
2
max

�

A graphical representation of the approximated value of the ratio
P

PE
' 1+ �

2

8
�
�vmax
l

�2
provided by equation (366), is illustrated in Figure 17.50.
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Figure 17.50
P

PE
Variation with

vmax
l

Conclusion 63 (a) Figure 17.104???? indicates that for
vmax
l
� 0:1

P � 1:01 � PE (367)

Conclusion 64 and consequently, the small de�ection assumption can be employed;

(b) the axial force P increases with the de�ection vmax.

The total vertical displacement �; the shortening of the column under the axial compres-
sive load P , is calculated in a similar manner as for vmax: An approximation of the total
shortening is obtained:

� =
�2

4 � l � v
2
max (368)

Remark 65 The vertical shortening of the column tip � is proportional to the square of
the maximum lateral de�ection vmax:

Substituting (368) into equation (366) the axial compressive force P is expressed function
of � :

P ' PE �
�
1 +

1

2 � l ��
�

(369)
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Remark 66 (a) The formula (369) is valid only after the bifurcation being dependent on
�, which in turn is dependent, accordingly to (368), on vmax;

(b) The increase in the axial compressive force P�PE after the bifurcation is proportional
to � or v2max:

The graphical representation of the ratio
P

PE
function of

�

l
is shown in Figure 17.51.

Figure 17.51
P

PE
Variation with

�

l

Remark 67 The normal stress � is calculated dividing the compressive force P by the
column area A:

� ' �cr �
�
1 +

1

2
� �in

�
(370)

where �in =
�

l
is the strain measured in the cross-section centroid.

Remark 68 The formula (370) is valid for an inextensible column.

To introduce the column �exibility an additional elastic strain �e has to be considered:

�e =
P � PE
E � A =

� � �cr
E

(371)

The total strain �f is calculated:
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�f = �in + �e = 2 �
�
�

�cr
� 1
�
+
� � �cr
E

(372)

Solving equation (372) for � :

� = �cr +
�cr

2 +
�cr
E

� �f = �cr +
�cr

2 +
�cr
E

� �
l
= (373)

= �cr +
�cr

2 +
��
�

�2 � �l

where � = 0 at the bifurcation when P = PE:

Multiplying equation (373) by A:

P = PE +
PE

2 +
PE
E � A

� �
l

(374)

To account for the entire deformation the displacement existing at bifurcation has to be
also added:

P (�) =

8>>><>>>:
PE �

�

�cr

if � � �cr

PE +
PE

2 +
PE
E � A

� ���cr

l
if � > �cr

(375)

where �cr =
PE � l
E � A = �cr �

l

E
=
�2 � E
�2

� l
E
=
��
�

�2
� l is the shortening at bifurcation.

The normal stress � calculated at the centroid position of the cross-section is:
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�(�) =

8>>><>>>:
�cr �

�

�cr

if � � �cr

�cr +
�cr

2 +
�cr
E

� ���cr

l
if � > �cr

= (376)

= �cr �

8>>><>>>:
�

�cr

if � � �cr

1 +
1

2 +
�cr
E

� (�
l
� �cr
E
) if � > �cr

=

= �cr �

8>>>><>>>>:

�
�

�

�2
� �
l

if
�

l
�
��
�

�2
1 +

1

2 +
��
�

�2 � (�l � ����2) if
�

l
>
��
�

�2

Figure 17.52 illustrates the variation of the ratio
�

�cr
with

�

l
for � = 120:

Figure 17.52
�

�cr
Variation

1.6 Buckling of Simple Continuos Beams and Frames

In the previous sections the buckling of individual columns was discussed and mathe-
matically characterized. In general the civil structures are composed from an ensemble
of individual columns and beams, generically called frame, jointed at the ends.. The
buckling of the frame is a very complex phenomenon and required a very extensive and
in-depth theoretical approach, which without any doubt overpasses the scope of this lec-
ture. In order for a student to understand and be ware of the di¤erences existing between
the buckling of individual member and the buckling of the same member being part of
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a frame, two types of very simple plane structures are discussed: continuous beams and
frames. For someone interested to explore the world of the structural stability the tech-
nical literature o¤ers a large range of problems by considering di¤erent constitutive laws
and dynamic nature of the loading.

1.6.1 Sti¤ness Matrix of Beam-Columns

The sti¤ness matrix Kff is a mathematical expression relating the end reactions vector,
moments and forces, Rff of the member to its end degrees of freedom vector, rotations
and translations, Dff . In this section only the sti¤ness matrix Kff of a plane member
are developed. The mathematical transformation between the the end reactions vector
Rff and end degrees of freedom vector Dff can be written as:

Rff = Kff �Dff (377)

where

Rff =

2664
M1

V1
M2

V2

3775 (378)

Dff =

2664
�1
v1
�2
v2

3775 (379)

and �1; �2; v1; v2 and �21 = v2 � v1are the rotations, displacements and the relative
displacement of the member ends, respectively.

Each component of the sti¤ness matrix Kff represents a reaction corresponding to a
speci�c displacement having a unit value. If the degrees of freedom of a plane frame
are considered �xed, one can observe that only two types of plane members, �xed-�xed
and hinged-�xed,are comprised in the ensemble. Consequently, only the sti¤ness matri-
ces for these two categories of beam-columns are developed and used in the following
applications.

1.6.1.1 Fixed-Fixed Beam-Column (Figure 17.53) A �xed-�xed plane beam-
column is characterized, if the axial deformation is neglected, by four degrees-of-freedom
�1; �2; v1; v2 representing the rotation and the transversal displacement at ends 1 and 2,
respectively.
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Figure 17.53

In order to obtain the relation between the reactions and the ends�degrees of freedom the
integration constants C1,C2, C3 and C4 characterizing the general solution v(x) expressed
by equation (49) have to be calculated for the speci�c boundary conditions They are:

- at the end 1 (x = 0):

v(x = 0) = v1 ! C1 � sin(k �0)+C2 cos(k �0)+C3 �0+C4 = v1 ! C2+C4 = v1 (380)

�(x = 0) = ��1 ! k�C1�cos(k�0)�k�C2�sin(k�0)+C3 = ��1 ! k�C1+C3 = ��1 (381)

- at the end 2 (x = l)

v(x = l) = v2 ! C1 � sin(k � l) + C2 cos(k � l) + C3 � l + C4 = v2 (382)

�(x = l) = ��2 ! k � C1 � cos(k � l)� k � C2 � sin(k � l) + C3 = ��2 (383)

Remark 69 The minus signs are introduced in order to accommodate the general con-
vention used in the structural analysis: the angles and moments are positive for a rotation
in the clock direction.

Equations (380) through (383) comprised a algebraic system, written in a matricial for-
mat, of for equations with constants coe¢ cients:
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2664
0 1 0 1
k 0 1 0

sin(k � l) cos(k � l) l 1
k � cos(k � l) �k � sin(k � l) 1 0

3775
2664
C1
C2
C3
C4

3775 =
2664
v1
��1
v2
��2

3775 (384)

The constants are calculated solving the system (384):

C1 = �
cos kl + kl sin kl � 1

2k cos kl � 2k + k2l sin kl�1+
cos kl � 1

2k cos kl � 2k + k2l sin kl�2+k
sin kl

2k cos kl � 2k + k2l sin klv1�k
sin kl

2k cos kl � 2k + k2l sin klv2
(385)

C2 =
sin kl � kl cos kl

2k cos kl � 2k + k2l sin kl�1�
sin kl � kl

2k cos kl � 2k + k2l sin kl�2�
k � k cos kl

2k cos kl � 2k + k2l sin klv1+
k � k cos kl

2k cos kl � 2k + k2l sin klv2
(386)

C3 = �
cos kl � 1

2 cos kl + kl sin kl � 2�1�
cos kl � 1

2 cos kl + kl sin kl � 2�2�k
sin kl

2 cos kl + kl sin kl � 2v1+k
sin kl

2 cos kl + kl sin kl � 2v2
(387)

C4 = �
sin kl � kl cos kl

2k cos kl � 2k + k2l sin kl�1+
sin kl � kl

2k cos kl � 2k + k2l sin kl�2+
k cos kl � k + k2l sin kl
2k cos kl � 2k + k2l sin klv1�

k � k cos kl
2k cos kl � 2k + k2l sin klv2

(388)

The expression of the bending moment M(x) is obtained as:

M(x) = �k2 � E � Iz � [C1 � sin(k � x) + C2 � cos(k � x)] = (389)

= �kEIz
�
sin (kl � kx) + sin kx� kl cos (kl � kx)

2 cos kl + kl sin kl � 2 �1 �
sin (kl � kx) + sin kx� kl cos kx

2 cos kl + kl sin kl � 2 �2 + k
cos (kl � kx)� cos kx
2 cos kl + kl sin kl � 2v1 � k

cos (kl � kx)� cos kx
2 cos kl + kl sin kl � 2v2

�
(390)

The end bending moments M1 and M2 are calculated particularizing equation (??):

108



M1 = M(x = 0) = �kEIz
�

sin kl � kl cos kl
2 cos kl + kl sin kl � 2�1 �

sin kl � kl
2 cos kl + kl sin kl � 2�2 + k

cos kl � 1
2 cos kl + kl sin kl � 2v1 � k

cos kl � 1
2 cos kl + kl sin kl � 2v2

�
=(391)

= EIz

�
�1
l
kl

sin kl � kl cos kl
2 cos kl + kl sin kl � 2�1 +

1

l
kl

sin kl � kl
2 cos kl + kl sin kl � 2�2 �

1

l2
k2l2

cos kl � 1
2 cos kl + kl sin kl � 2v1 +

1

l2
k2l2

cos kl � 1
2 cos kl + kl sin kl � 2v2

�
=

=
EIz
l

�
�kl sin kl � kl cos kl

2 cos kl + kl sin kl � 2�1 + kl
sin kl � kl

2 cos kl + kl sin kl � 2�2 �
1

l
k2l2

cos kl � 1
2 cos kl + kl sin kl � 2v1 +

1

l
k2l2

cos kl � 1
2 cos kl + kl sin kl � 2v2

�
=

=
EIz
l

�
s(kl)�1 + s(kl)c(kl)�2 �

1

l
s(kl)(1 + c(kl))v1 +

1

l
s(kl)(1 + c(kl))v2

�
=
EIz
l

�
s(kl)�1 + s(kl)c(kl)�2 +

1

l
s(kl)(1 + c(kl))(v2 � v1)

�

M2 = �M(x = l) = kEIz
�

sin kl � kl
2 cos kl + kl sin kl � 2�1 �

sin kl � kl cos kl
2 cos kl + kl sin kl � 2�2 � k

cos kl � 1
2 cos kl + kl sin kl � 2v1 + k

cos kl � 1
2 cos kl + kl sin kl � 2v2

�
(392)

= EIz

�
1

l
kl

sin kl � kl
2 cos kl + kl sin kl � 2�1 �

1

l
kl

sin kl � kl cos kl
2 cos kl + kl sin kl � 2�2 �

1

l2
k2l2

cos kl � 1
2 cos kl + kl sin kl � 2v1 +

1

l2
k2l2

cos kl � 1
2 cos kl + kl sin kl � 2v2

�
=

= EIz

�
1

l
kl

sin kl � kl
2 cos kl + kl sin kl � 2�1 �

1

l
kl

sin kl � kl cos kl
2 cos kl + kl sin kl � 2�2 �

1

l2
k2l2

cos kl � 1
2 cos kl + kl sin kl � 2v1 +

1

l2
k2l2

cos kl � 1
2 cos kl + kl sin kl � 2v2

�
=

=
EIz
l

�
s(kl)c(kl)�1 + s(kl)�2 �

1

l
s(kl)(1 + c(kl))v1 +

1

l
s(kl)(1 + c(kl))v2

�
=
EIz
l

�
s(kl)c(kl)�1 + s(kl)�2 +

1

l
s(kl)(1 + c(kl))(v2 � v1)

�

where the notation stands for:

s(kl) = � kl(sin kl � kl cos kl)
2 cos kl + kl sin kl � 2 =

kl(sin kl � kl cos kl)
2� 2 cos kl � kl sin kl (393)

c(kl) =
kl � sin kl

sin kl � kl cos kl (394)

The reaction forces, V1 and V2 are calculated from the member equilibrium, by writing
the moment equation at the location of the end 2 and the projection of the forces on y
axis:

�V1 � l � P � (v2 � v1) +M1 +M2 = 0 (395)

�V1 + V2 = 0 (396)
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Solving the �rst equilibrium equation and substituting the expressions of the end moments
obtained above the reaction forces are:

V1 = V2 = V =
M1 +M2 � P � (v2 � v1)

l
= (397)

=

EIz
l

�
s(kl)�1 + s(kl)c(kl)�2 +

1

l
s(kl)(1 + c(kl))(v2 � v1)

�
+
EIz
l

�
s(kl)c(kl)�1 + s(kl)�2 +

1

l
s(kl)(1 + c(kl))(v2 � v1)

�
� k2EIz(v2 � v1)

l
=

=
EIz
l

�
s(kl)�1 + s(kl)c(kl)�2 +

1

l
s(kl)(1 + c(kl))(v2 � v1)

�
+

�
s(kl)c(kl)�1 + s(kl)�2 +

1

l
s(kl)(1 + c(kl))(v2 � v1)

�
� k2l(v2 � v1)

l
=

=
EIz
l

(s(kl) + s(kl)c(kl))�1 + (s(kl) + s(kl)c(kl))�2 + (
2

l
s(kl)(1 + c(kl))� k2l)(v2 � v1)

l
=

=
EIz
l

�
s(kl)(1 + c(kl))

l
�1 +

s(kl)(1 + c(kl))

l
�2 +

2s(kl)(1 + c(kl))� k2l2
l2

(v2 � v1)
�

The expressions (391), (392) and (397) are employed to ensemble the sti¤ness matrix Kff

of the �xed-�xed member as follows:

2664
M1

V1
M2

V2

3775 = EIz
l

2666666664

s(kl) �s(kl)(1 + c(kl))
l

s(kl)c(kl)
s(kl)(1 + c(kl))

l
s(kl)(1 + c(kl))

l
�2s(kl)(1 + c(kl))� k

2l2

l2
s(kl)(1 + c(kl))

l

2s(kl)(1 + c(kl))� k2l2
l2

s(kl)c(kl) �s(kl)(1 + c(kl))
l

s(kl)
s(kl)(1 + c(kl))

l
s(kl)(1 + c(kl))

l
�2s(kl)(1 + c(kl))� k

2l2

l2
s(kl)(1 + c(kl))

l

2s(kl)(1 + c(kl))� k2l2
l2

3777777775

2664
�1
v1
�2
v2

3775

(398)

where the matrix Kff (4x4) is the sti¤ness matrix of the �xed-�xed beam-column:

Kff =
EIz
l

2666666664

s(kl) �s(kl)(1 + c(kl))
l

s(kl)c(kl)
s(kl)(1 + c(kl))

l
s(kl)(1 + c(kl))

l
�2s(kl)(1 + c(kl))� k

2l2

l2
s(kl)(1 + c(kl))

l

2s(kl)(1 + c(kl))� k2l2
l2

s(kl)c(kl) �s(kl)(1 + c(kl))
l

s(kl)
s(kl)(1 + c(kl))

l
s(kl)(1 + c(kl))

l
�2s(kl)(1 + c(kl))� k

2l2

l2
s(kl)(1 + c(kl))

l

2s(kl)(1 + c(kl))� k2l2
l2

3777777775
(399)

The variation of the sti¤ness coe¢ cients where kl = �

r
P

PE
is illustrated in Figure 17.54.
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Figure 4: Figure 17.54 Sti¤ness Matrix Coe¢ cients Variation

If the functions s(kl) and c(kl) are expanded in a truncated Taylor series with �ve terms
around the value kl = 0 the expressions of the sti¤ness matrix coe¢ cients become:

s(kl) ' 4� 2

15
(kl)2 � 11

6300
(kl)4 � 1

27 000
(kl)6 � 509

582 120 000
(kl)8 = (400)

= 4� 2

15
(�

r
P

PE
)2 � 11

6300
(�

r
P

PE
)4 � 1

27 000
(�

r
P

PE
)6 � 509

582 120 000
(�

r
P

PE
)8

c(kl) ' 1

2
+
1

40
(kl)2 +

11

8400
(kl)4 +

67

1008 000
(kl)6 +

2579

776 160 000
(kl)8 = (401)

=
1

2
+
1

40
(�

r
P

PE
)2 +

11

8400
(�

r
P

PE
)4 +

67

1008 000
(�

r
P

PE
)6 +

2579

776 160 000
(�

r
P

PE
)8

the expressions of the sti¤ness matrix coe¢ cients become:

s(kl)c(kl) ' 2 + 1

30
(kl)2 +

13

12 600
(kl)4 +

11

378 000
(kl)6 +

907

1164 240 000
(kl)8 (402)

s(kl)(c(kl) + 1) ' 6� 1

10
(kl)2 � 1

1400
(kl)4 � 1

126 000
(kl)6 � 37

388 080 000
(kl)8 (403)

2s(kl)(c(kl)+1)�k2l2 ' 12� 6
5
(kl)2� 1

700
(kl)4� 1

63 000
(kl)6� 37

194 040 000
(kl)8 (404)
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In order to substantiate the error make by the usage of the truncated Taylor series, substi-

tute kl = �

r
P

PE
in the expressions of the sti¤ness matrix coe¢ cients and superimposed

them over the exact expressions drawn in Figure 17.54. Because the functions s(kl) and
c(kl) are the main components of the sti¤ness coe¢ cients it is instructive to plot them
together with various degrees of approximation as shown in Figure 17.55.

Figure 17.55 Degrees of Approximation for s(
P

PE
) and c(

P

PE
)Functions

Figure 17.55 Functions s(kl) and c(kl)

Remark 70 From Figure 17.55 can be infer that the approximation with only two terms

closely follows the exact function for the interval
P

PE
2 [0; 1:5]. Outside of this interval

for
P

PE
> 1:5 the error signi¢ cantly increases and the exact function has to be used. The

approximations with more terms reduce somehow the error, but the di¤erence remain
noticeable. It can be concluded that just the approximation with two terms is enough for

the interval
P

PE
2 [0; 1:5].

Using the above coe¢ cients to express the sti¤ness matrix Kff (4x4) an interesting
approximation is obtained:

Kff ' EIz
l

266666664

4 �6
l

2
6

l
6

l
�12
l2

6

l

12

l2

2 �6
l

4
6

l
6

l
�12
l2

6

l

12

l2

377777775
+
EIz
l

266666664

� 2
15

1

10l

1

30
� 1

10l

� 1

10l

6

5l2
� 1

10l
� 6

5l2
1

30

1

10l
� 2
15

� 1

10l

� 1

10l

6

5l2
� 1

10l
� 6

5l2

377777775
k2l2 + :::: =(405)

= K0
ff +K

1
ffk

2l2 + ::: = K0
ff +K

1
ff � (�

r
P

PE
)2+ (406)
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Remark 71 (a) The matrix K0
ff is the sti¤ness matrix for a �xed-�xed member when

the compressive force is absent or negligible;

K0
ff =

EIz
l

266666664

4 �6
l

2
6

l
6

l
�12
l2

6

l

12

l2

2 �6
l

4
6

l
6

l
�12
l2

6

l

12

l2

377777775
(407)

Remark 72 (b)The matrixK1
ff represents the �rst correction when the compressive force

is present;

K1
ff =

EIz
l

266666664

� 2
15

1

10l

1

30
� 1

10l

� 1

10l

6

5l2
� 1

10l
� 6

5l2
1

30

1

10l
� 2
15

� 1

10l

� 1

10l

6

5l2
� 1

10l
� 6

5l2

377777775
(�

r
P

PE
)2 (408)

=
�2EIz
l

EIz
l

266666664

� 2
15

1

10l

1

30
� 1

10l

� 1

10l

6

5l2
� 1

10l
� 6

5l2
1

30

1

10l
� 2
15

� 1

10l

� 1

10l

6

5l2
� 1

10l
� 6

5l2

377777775
P

PE

To assess the error made by using the two term approximation in calculating the sti¤ness

matrix a comparison is made for few ratios
P

PE
:

-for
P

PE
= 0:5

Kff =
EIz
l

266664
3:2945 2:936

5:881

l

2:936 3:2945
5:881

l
5:881

l

5:881

l

6:044

l2

377775 (409)
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Kapp
ff =

EIz
l

266664
3:342 2:1645

5:5065

l

2:1645 3:342
5:5065

l
5:5065

l

5:5065

l

6:0782

l2

377775 (410)

max_error =

-for
P

PE
= 1

?????????????????????????????????????????????????

1.6.1.2 Fixed-Hinged Column (Figure 17.56) A�xed-hinged plane beam-column
is characterized, if the axial deformation is neglected, by three degrees-of-freedom �2; v1; v2
representing the rotation at end 1 and the transversal displacement at ends 1 and 2, re-
spectively.

Figure 17.56 Fixed- Pined Column

To obtain the relation between the reactions and the ends�degrees of freedom the inte-
gration constants C1,C2, C3 and C4 characterizing the general solution v(x) expressed by
equation (49?????????) are calculated for the speci�c boundary conditions They are:

- at the end 1 (x = 0)

v(x = 0) = �v1 ! C1�sin(k�0)+C2 cos(k�0)+C3�0+C4 = v1 ! C2+C4 = �v1 (411)

M(x = 0) = 0! �k2 � E � Iz � [C1 � sin(k � 0) + C2 � cos(k � 0)] = 0 (412)

! �k2 � E � Iz � C2 = 0
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- at the end 2 (x = l)

v(x = l) = �v2 ! C1 � sin(k � l) + C2 cos(k � l) + C3 � l + C4 = �v2 (413)

�(x = l) = ��2 ! k � C1 � cos(k � l)� k � C2 � sin(k � l) + C3 = ��2

Remark 73 The minus signs are introduced in order to accommodate the general conven-
tion used in the structural analysis: the angles and moments are positive for a rotation in
the clock direction. Equations (411) through (??) comprised an algebraic system, written
in a matricial format, for equations with constants coe¢ cients:

2664
0 1 0 1
0 �k2 � E � Iz 0 0

sin(k � l) cos(k � l) l 1
k � cos(k � l) �k � sin(k � l) 1 0

3775
2664
C1
C2
C3
C4

3775 =
2664
�v1
0
�v2
��2

3775 (414)

The constants are calculated solving the system (414):

C1 =
l

sin kl � kl cos kl�2 +
1

sin kl � kl cos klv1 �
1

sin kl � kl cos klv2 (415)

C2 = 0 (416)

C3 = �
sin kl

sin kl � kl cos kl�2 � k
cos kl

sin kl � kl cos klv1 + k
cos kl

sin kl � kl cos klv2 (417)

C4 = �v1 (418)

The expression of the bending moment M(x) is obtained as:

M(x) = �k2 � E � Iz � [C1 � sin(k � x) + C2 � cos(k � x)] = (419)

= �k2 � E � Iz � (
l sin(k � x)

sin kl � kl cos kl�2 +
sin(k � x)

sin kl � kl cos klv1 �
sin(k � x)

sin kl � kl cos klv2)
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The end bending moments M2 is calculated by particularizing equation (419) for x = l:

M2 = �M(x = l) = k2EIz
�
l

sin kl

sin kl � kl cos kl�2 +
sin kl

sin kl � kl cos klv1 �
sin kl

sin kl � kl cos klv2
�
=(420)

= EIz

�
k2l

sin kl

sin kl � kl cos kl�2 + k
2 sin kl

sin kl � kl cos klv1 � k
2 sin kl

sin kl � kl cos klv2
�
=

= EIz

�
1

l
k2l2

sin kl

sin kl � kl cos kl�2 +
1

l2
k2l2

sin kl

sin kl � kl cos klv1 �
1

l2
k2l2

sin kl

sin kl � kl cos klv2
�
=

=
EIz
l

�
k2l2

sin kl

sin kl � kl cos kl�2 +
1

l
k2l2

sin kl

sin kl � kl cos klv1 �
1

l
k2l2

sin kl

sin kl � kl cos klv2
�
=

=
EIz
l

�
k2l2

sin kl

sin kl � kl cos kl�2 �
1

l
k2l2

sin kl

sin kl � kl cos kl (v2 � v1)
�
=

=
EIz
l

�
k2l2

sin kl

sin kl � kl cos kl�2 �
1

l
k2l2

sin kl

sin kl � kl cos kl�21

�
=

=
EIz
l

�
d(kl)�2 �

1

l
d(kl)�21

�

where the notation stands for:

d(kl) = k2l2
sin kl

sin kl � kl cos kl (421)

and �21 is the relative displacement between the ends 1 and 2, respectively.

�21 = v2 � v1 (422)

The reaction forces, V1 and V2 are calculated from the member equilibrium, by writing
the moment equation at the location of the end 2 and the projection of the forces on y
axis:

V1 � l + P � (v2 � v1) +M2 = 0 (423)

V1 � V2 = 0 (424)

Solving the �rst equilibrium equation and substituting the expression of the end moment
M1 obtained above the reaction forces are
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V1 = V2 = V = �
M2

l
� P � (v2 � v1)

l
= (425)

= �1
l
(
EIz
l

�
d(kl)�2 �

1

l
d(kl)�21

�
)� P ��21

l
=

=
EIz
l2

�
�d(kl)�2 +

1

l
d(kl)�21

�
� k

2EIz ��21

l
=

=
EIz
l2
(�d(kl)�2 +

1

l
(d(kl)� k2 � l2)�21)

The expressions (420) and (425) are employed to ensemble the sti¤ness matrix of the
�xed-hinged member :

�
M2

V

�
=
EIz
l

264 d(kl) �d(kl)
l

�d(kl)
l

d(kl)� k2l2
l2

375� �2
�21

�
(426)

where the matrix Kff (2x2) is the sti¤ness matrix of the �xed-hinged beam-column:

Kff =
EIz
l

264 d(kl) �d(kl)
l

�d(kl)
l

d(kl)� k2l2
l2

375 (427)

Remark 74 The number of degrees of freedom is reduced to only two for the case of the
�xed-hinged beam-column and consequently, the sizes of the sti¤ness matrix Kff (2x2),
reaction vector Rff (2; 1) and displacement end vector Dff (2; 1) are accordingly reduced.

A similar discussion can be made relatively to the approximation of the function and
sti¤ness matrix by expanding them in a truncated Taylor series with �ve terms.

1.6.1.3 Stability of Simple Continuos Column (Figure 17.57) A simple exam-
ple of a continuous beam-colum characterized by a constant cross-section is illustrated in
Figure 17.57.a.

117



Figure 17.57

By �xing the rotation of the node 2; �2 (the upperscript indice refers at the node number
of continuous beam, in this case node number 2 ), as illustrated in Figure 17.57.b, the
system is divided into two �xed-hinged beams. If a clock-wise rotation �2 is applied
to the �xity of node, in each member reactions will appear at the ends. A kinematic
analysis of the possibilities of motion of the ends, followed by the reaction determination
in accordance to equation (426), is evaluated for each individual member:

- member 1 :(
EIz
l
=
EI0
l1
; kl = k1l1)

kinematic analysis: �2 = �
2 v1 = 0 v2 = 0 �21 = 0

reactions calculation accordingly to equation (426):

�
M2_1

V_1

�
=
EI0
l1

2664 d(k1l1) �d(k1l1)
l1

�d(k1l1)
l1

d(k1l1)� k21l21
l21

3775� �2 = �2�21 = 0

�
= (428)

�
M2_1

V_1

�
=
EI0
l1

24 d(k1l1)�
2

�d(k1l1)
l1

�2

35 (429)

- member 2 :(
EIz
l
=
EI0
l2
; kl = k2l2)

kinematic analysis: �2 = �
2 v1 = 0 v2 = 0 �21 = 0

reactions calculation adapting equation (426) to the beam position in the system:
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�
M2_2

V_2

�
=
EI0
l2

2664 d(k2l2) �d(k2l2)
l2

�d(k2l2)
l2

d(k2l2)� k22l22
l22

3775� �2 = �2�21 = 0

�
= (430)

�
M2_2

V_2

�
=
EI0
l2

24 d(k2l2)�
2

�d(k2l2)
l2

�2

35 (431)

The total moment M2 is arti�cially induced by the imposed rotation �2 is zero in reality:

M2 = 0!M2_1 +M2_2 = 0 (432)

Substituting the expressions of the moments, M2_1 and M2_2, calculated in equations
(428) and (430) into equation (432) the following equilibrium equation is obtained:

EI0
l1
d(k1l1)�

2 +
EI0
l2
d(k2l2)�

2 = 0! (433)

[
EI0
l1
d(k1l1) +

EI0
l2
d(k2l2)]�

2 = 0

Equation (433) imposes for �2 6= 0 that :

EI0
l1
d(k1l1) +

EI0
l2
d(k2l2) = 0 (434)

Equation (434) represents the stability equation of the beam-column.

To solve this equation a number of cosmetic arrangements has to be conducted, by uni-
fying some of the parameters involved:

l1 = l0 (435)

l2 = �l0

k1l1 = l1

r
P1
EI1

= l0

r
P

EI0
= kl

k2l2 = l2

r
P2
EI2

= �l0

r
P

EI0
= �kl
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Substituting parameters expressed by equations (435) into equation (434)the following
stability equation is obtained:

EI0
l0
d(kl) +

EI0
�l0

d(�kl) = 0 (436)

At this point, the explicit expressions of the functions d(kl) type has to be substituted
into equation (436) and after algebraic manipulations:

(kl)2
sin kl

sin kl � kl cos kl + �(kl)
2 sin�kl

sin�kl � �kl cos�kl = 0 (437)

The trigonometric equation (??) is solved graphically and the representative functional
relation between � and kl is shown in Figure 17.58

Figure 17.58

Some of the results obtained from the the graph illustrated in Figure 17.58 are presented
in the following table:

� = l2=l1 kl lb=l = �=kl P=PE = (kl=�)
2

0:05 4:4208 0:71064 1:9802
1:0 3:1416 1:00000 1:0000
2:0 1:9283 1:6292 0:3767
3:0 1:3533 2:3214 0:1856
4:0 1:0403 3:0199 0:1097
5:0 0:8446 3:7196 0:0723

(438)
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1.6.1.4 Stability of Simple Frame (Figure 17.59) The simple case of the planar
frame shown in Figure 17.59.a.

The frame has three possibilities of movement: the rotations of nodes 2 and 3, �1 and �2,
and the horizontal displacement, � of the girder 23. The reduced number of movement
possibilities, the number of degrees of freedom, which in general are equal to the number of
free nodes,2 in this case, multiplied by 3 , is due to the assumption the beam-columns are
considered rigid along their longitudinal axis. As was proceed in the previous example,
the three degrees of freedom are blocked and the resulting structure, illustrated in Figure
17.59.b, made of tree �xed-�xed beam-columns results. Because the con�guration of the
structure does not have a clear path to follow and orientate each member, the path used
is shown by arrows indicated on Figure 17.59.b. Using the sti¤ness matrices pertinent to
each member, the corresponding moments and shear forces are calculated:

- member 1 (
EIz
l
=
EIc
lc
; kl = kclc) represents the columns (2� 3):

kinematic analysis: �1_1 = 0 v1_1 = 0 �2_1 = �
2 v2_1 = ��

reactions calculation:
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2664
M1_1 =M

1
_1

V1_1 = V
1
_1

M2_1 =M
2
_1

V2_1 = V
2
_1

3775 = EIc
lc

26666666664

s(kclc) �s(kclc)(1 + c(kclc))
lc

s(kclc)c(kclc)
s(kclc)(1 + c(kclc))

lc
s(kclc)(1 + c(kclc))

lc
�2s(kclc)(1 + c(kclc))� k

2
c l
2
c

l2c

s(kclc)(1 + c(kclc))

lc

2s(kclc)(1 + c(kclc))� k2c l2c
l2c

s(kclc)c(kclc) �s(kclc)(1 + c(kclc))
lc

s(kclc)
s(kclc)(1 + c(kclc))

lc
s(kclc)(1 + c(kclc))

lc
�2s(kclc)(1 + c(kclc))� k

2
c l
2
c

l2c

s(kclc)(1 + c(kclc))

lc

2s(kclc)(1 + c(kclc))� k2c l2c
l2c

37777777775

2664
�1_1 = 0
v1_1 = 0
�2_1 = �

2

v2_1 = ��

3775

(439)

Remark 75 The �rst subscript, 1 or 2, of the reaction vector components represent
the end number of the typical beam-column corresponding to the notation in the section
where the sti¤ness matrix has been developed. The second subscript of the reaction vector
components preceded by a underscore line indicates the number of the member in the
structure (1)

- member 2 (
EIz
l
=
EIg
lg
; kglg = 0) noaxial load represents the girder (2� 3):

kinematic analysis: �1_2 = �
2 v1_2 = 0 �2_2 = �

3 v2_2 = 0(the columns
are �nite rigid axially)

reactions calculation:

2664
M1_2 =M

2
_2

V1_2 = V
2
_2

M2_2 =M
3
_2

V2_2 = V
3
_2

3775 = EIg
lg

266666666664

s(0) �s(0)(1 + c(0))
lg

s(0)c(0)
s(0)(1 + c(0))

lg
s(0)(1 + c(0))

lg
�2s(0)(1 + c(0))� 0

2

l2g

s(0)(1 + c(0))

lg

2s(0)(1 + c(0))� 02
l2g

s(0)c(0) �s(0)(1 + c(0))
lg

s(0)
s(0)(1 + c(0))

lg
s(0)(1 + c(0))

lg
�2s(0)(1 + c(0))� 0

2

l2g

s(0)(1 + c(0))

lg

2s(0)(1 + c(0))� 02
l2g

377777777775

2664
�1_2 = �

2

v1_2 = 0
�2_2 = �

3

v2_2 = 0

3775

(440)

2664
M1_2 =M

2
_2

V1_2 = V
2
_2

M2_2 =M
3
_2

V2_2 = V
3
_2

3775 = EIg
lg

266666664

4 �6
l

2
6

l
6

l
�12
l2

6

l

12

l2

2 �6
l

4
6

l
6

l
�12
l2

6

l

12

l2

377777775
2664
�1_2 = �

2

v1_2 = 0
�2_2 = �

3

v2_2 = 0

3775
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- member 3 (
EIz
l
=
EIc
lc
; kl = kclc) represents the column (3� 4):

kinematic analysis: �1_3 = �
3 v1_3 = � �2_3 = 0 v2_3 = 0

reactions calculation:

2664
M1_3 =M

3
_3

V1_3 = V
3
_3

M2_3 =M
4
_3

V2_3 = V
4
_3

3775 = EIc
lc

26666666664

s(kclc) �s(kclc)(1 + c(kclc))
lc

s(kclc)c(kclc)
s(kclc)(1 + c(kclc))

lc
s(kclc)(1 + c(kclc))

lc
�2s(kclc)(1 + c(kclc))� k

2
c l
2
c

l2c

s(kclc)(1 + c(kclc))

lc

2s(kclc)(1 + c(kclc))� k2c l2c
l2c

s(kclc)c(kclc) �s(kclc)(1 + c(kclc))
lc

s(kclc)
s(kclc)(1 + c(kclc))

lc
s(kclc)(1 + c(kclc))

lc
�2s(kclc)(1 + c(kclc))� k

2
c l
2
c

l2c

s(kclc)(1 + c(kclc))

lc

2s(kclc)(1 + c(kclc))� k2c l2c
l2c

37777777775

2664
�1_3 = �

3

v1_3 = �
�2_3 = 0
v2_3 = 0

3775

(441)

Remark 76 The rotations of the nodes 2 and 3, �2 and �3; and the lateral displacement �
of the real structure are not prevented. The induced blockages generate arti�cial reaction
at these locations, which are in reality zero.

Using the �nding of the above remark, the moment reactions, M2 and M3, and the
horizontal force reaction R� generated around the �xity blocks of the nodes 2 and 3 and
in the horizontal restraint of the lateral displacement three equations of equilibrium are
written:

M2 = 0 (442)

M3 = 0

R� = 0

Substituting into equation (442) the expressions of the corresponding moments and re-
actions of individual members, equations (439) through (??), results:

M2
_1 +M

2
_2 = 0 (443)

M3
_2 +M

3
_3 = 0

V 2_1 + V
3
_3 = 0

and explicitly after algebraic manipulations the system (443) becomes:
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�
M2_1 =M

2
_1

V2_1 = V
2
_1

�
=
EIc
lc

2664 s(kclc)�
2 � s(kclc)(1 + c(kclc))

lc
�

s(kclc)(1 + c(kclc))

lc
�2 � 2s(kclc)(1 + c(kclc))� k

2
c l
2
c

l2c
�

3775
�
M1_2 =M

2
_2

M2_2 =M
3
_2

�
=
EIg
lg

�
4�2 + 2�3

2�2 + 4�3

�
=
EIc
lc

�
4��2 + 2��3

2��2 + 4��3

�

�
M1_3 =M

3
_3

V1_3 = V
3
_3

�
=
EIc
lc

2664 s(kclc)�
3 � s(kclc)(1 + c(kclc))

lc
�

s(kclc)(1 + c(kclc))

lc
�3 � 2s(kclc)(1 + c(kclc))� k

2
c l
2
c

l2c
�

3775

(s(kclc) + 4�) �
2 + 2��3 � s(kclc)(1 + c(kclc))

lc
� = 0(444)

2��2 + (s(kclc) + 4�) �
3 � s(kclc)(1 + c(kclc))

lc
� = 0

�s(kclc)(1 + c(kclc))
lc

�2 � s(kclc)(1 + c(kclc))
lc

�3 + 2
2s(kclc)(1 + c(kclc))� k2c l2c

l2c
� = 0

where � =
EIg
lg
� lc
EIc

=
Ig
Ic
� lc
lg
:(Attention s(kclc) and c(kclc) are functions of kl !!!!!)

In matricial format the system (443) is re-written as:

2666664
s(kclc) + 4� 2� �s(kclc)(1 + c(kclc))

lc

2� s(kclc) + 4� �s(kclc)(1 + c(kclc))
lc

�s(kclc)(1 + c(kclc))
lc

�s(kclc)(1 + c(kclc))
lc

2
2s(kclc)(1 + c(kclc))� k2c l2c

l2c

3777775
24�2�3
�

35 =
2400
0

35
(445)

The system (444) is homogeneous and to have non-trivial solutions, di¤erent of the trivial
solution is required that the determinant of the coe¢ cients to be zero:

�����������

s(kclc) + 4� 2� �s(kclc)(1 + c(kclc))
lc

2� s(kclc) + 4� �s(kclc)(1 + c(kclc))
lc

�s(kclc)(1 + c(kclc))
lc

�s(kclc)(1 + c(kclc))
lc

2
2s(kclc)(1 + c(kclc))� k2c l2c

l2c

�����������
= 0 (446)
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Expanding the determinant located in the left side of equation (446) the following char-
acteristic equation results:

[1�c(kclc)2]s(kclc)3+[12�c(kclc)�2�c(kclc)2�y2+14�]s(kclc)2+8[3�2+3c(kclc)�2�y2�]s(kclc)�12y2�2 = 0
(447)

The calculation of �nding the exact solution of kl function from the equations (447)
is an impossibility and consequently, the graphical implicit method is employed again.
Substituting the expression of the functions s(kclc) and c(kclc) into equations (447) the
equations of the following plane curve is obtained:

 
1�

�
y � sin y

sin y � y cos y

�2!�
y(sin y � y cos y)
2� 2 cos y � y sin y

�3
+ (448)

+

 
12x

�
y � sin y

sin y � y cos y

�
� 2x

�
y � sin y

sin y � y cos y

�2
� y2 + 14x

!�
y(sin y � y cos y)
2� 2 cos y � y sin y

�2
+

+

�
24x2 + 24

�
y � sin y

sin y � y cos y

�
x2 � 8xy2

��
y(sin y � y cos y)
2� 2 cos y � y sin y

�
+

�12x2y2 = 0

where y = kclc and x = �:

The curve representing the functional relation between kl function � is illustrated in
Figure 17.60.

Figure 17.60 Functional Relation kl � �

Some of the results plotted on Figure 17.60 are also numerically obtained by solving
equation (448) for di¤erent values. They are presented in the following table:
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� = l2=l1 kl lb=l = �=kl P=PE = (kclc=�)
2

0:0 1:5708 2:00000 0:25000
1:0 2:7165 1:15649 0:74768
2:0 2:9041 1:08178 0:85452
3:0 2:9777 1:05504 0:89838
4:0 3:0166 1:04143 0:92202
5:0 3:0406 1:03321 0:93675
100:0 3:1364 1:00166 0:99669

(449)

Remark 77 Analyzing the functional relation � � kl illustrated by the graph shown in
Figure 17.60 it can be concluded:

(a) the buckling length lb and minimum critical load Pcr of the columns varies 1 � lb � 2
and 0:25PE � Pcr � PE respectively;

(b) for Ig ! 0 the parameter � =
Ig
Ic
� lc
lg
! 0 and kl ! 1:57, value corresponding to a

buckling length lb = 2 � l and a minimum critical load Pcr = 0:25PE;

(c) for Ig ! 1 the parameter � =
Ig
Ic
� lc
lg
! 1 and kl ! 3:14, value corresponding to

a buckling length lb = l and a minimum critical load Pcr = PE where PE =
�2EIc
lc

;

(d) the buckling is an antisymmetric buckling (sway) This conclusion can be easily sub-
stantiated if considering a value for the lateral displacement � 6= 0 the system (445)
reduces to a symmetrical system with two unknowns �2 and �3and equal free terms pro-
portional to �. Solving this system for any kl results that �2 = �3

(e) a symmetric buckling (no-sway) required � = 0, a condition requiring the existence
of the lateral �xity blockage of the frame and consequently the stability condition (445)
reduces to:

�
s(kclc) + 4� 2�

2� s(kclc) + 4�

� �
�2

�3

�
=

�
0
0

�
(450)

Then, the corresponding characteristic equation is:

(s(kclc) + 4�)
2 � 4�2 = 0 (451)

Proceeding in a similar manner as for the antisymmetric buckling the implicit curve is su-
perimposed plotted on Figure 17.58. A table containing representative results is presented
below:
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� = l2=l1 kl lb=l = �=kl P=PE = (kclc=�)
2

0:0 4:4934 0:6992 2:0455
1:0 5:1330 0:6120 2:6699
2:0 5:4361 0:5779 2:9943
3:0 5:6134 0:5596 3:1933
4:0 5:7297 0:5483 3:3263
5:0 5:8118 0:5406 3:4217
100:0 6:2523 0:5025 3:9603

(452)

It can be concluded that for no-sway case, the symmetric buckling, the buckling length lb
and minimum critical load Pcr of the columns varies as:

0:5 � lb � 0:7 and 2PE � Pcr � 4PE, respectively;

1.7 Inelastic Buckling of the Ideal Column

The inelastic buckling of a column is also exempli�ed by investigating the Euler ideal
column which is characterized by hinged-pinned end constrains. The behavior of the
ideal columns subjected to an compressive force P is characterized by the value of its

slenderness � =
l

rz
in three categories:

(a) if �0 � � =
l

rz
� 200; where �0 = � �

s
E

�0y
the column is called long column and

its buckling behavior is governed by the Euler formulae(35), (39) and (40) previously
established. For this type of buckling the material is constrained to the elastic range;

(b) if 20 < � =
l

rz
� �0 the column is called intermediate column and represents the

material behavior between the on-set yielding stress �0y and the ultimate stress �u:;

(c) if 0 < � =
l

rz
� 20 the column is called short column and the buckling does not

occurs. The material looses its capacity in pure compression.

The �rst and the last categories, the long and short column, were in-depth analyzed, but
the buckling phenomenon refated to the intermediate column needs additional consider-
ation. This type of buckling is called inelastic buckling. The behavior of the ideal Euler
column subjected to centric compressive force is illustrated in Figure 17.61.
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Figure 17.61 Buckling Behavior of a Column

It is assumed that when the column is just on the verge of buckling the average normal
compressive stress �x on its cross-section reaches, as illustrated in Figure 17.62, a value
�Bx greater than the on-set yielding value �

0
y :

�x = �
B
x =

P

A
> �0y (453)

Figure 17.62 Compressive Stress-Strain Diagram

There are three principal theories predicting the value of �Bx at which the column will
buckle inelastically: (a) the Tangent Modulus Theory, (b) the Reduced Modulus Theory
and (c) Shanley Theory.
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1.7.1 The Tangent Modulus Theory

In 1889, two scientists, Considered and Engeser, independently had suggested that the
column strength in the inelastic range might be obtained simply by substituting Et, the
tangent modulus, instead of E in the Euler formula. This conclusion is based on the
assumption that the column retains its linear equilibrium con�guration until the compres-
sive force reaches its critical value (P = Pcr) and only after that the lateral �exion of
the column, the curved equilibrium con�guration, takes place without any change in the
magnitude of the compressive force P ..This assumption implies that the member is in a
neutral equilibrium. Under this assumption the theoretical development is conducted in
a similar manner with that used for the investigation of the previously treated elastic
buckling of the Euler�s ideal column. The equation (18) Mz(x) = �P � v(x) remains
valid, but in the equation (19)

the elastic modulus E is replaced by the tangent modulus Et. The tangent modulus, as
illustrated in Figure 17.62, represents the slope of the compressive stress-strain curve at
�BxThe new di¤erential equation, valid only for the case of small deformations, is:

dv(x)2

dx2
=
Mz(x)

Et � Iz
(454)

where Iz is the moment of inertia.

Combining equations (18) and (454) the following second-order homogeneous di¤erential
equation is obtained:

Et � Iz � v(x)" + P � v(x) = 0 (455)

The equation (455) is mathematically identical to equation (20) and consequently, the
critical load is written as:

P tcr =
�2 � Et(�x) � Iz

l2
= �(�x) � PEcr (456)

and

�tcr(�; �) =
�2 � Et(�x)

�2
= �(�x) � �Ecr (457)

where �(�x) =
Et(�x)

E
and :Et(�x) =

d�

d�
(� = �Bx ):
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Remark 78 (a) The calculation of Pcr is conducted using an iterative procedure.

(b) The Tangent-Modulus Theory, as shown in equations (456) and (457) considers in the
calculation of the critical load Pcr only an unique value, the tangent modulus Et(�x); fact
which conducts to some di¤erence when the comparison with laboratory tests is made;

(c) The experimental results indicate a slightly greater value for the critical load than the
value P tcr calculated by the Tangent Modulus Theory. This fact is explained by the error
introduced by the assumption that is no variation in the value of the axial load during the
con�gurations change.

1.7.2 The Reduced Modulus Theory

In 1895, Engeser proceeded to develop a new general formula for inelastic buckling of
the columns by introducing the concept of the reduced modulus Er. He stated that the
reduced modulus Er depends not only on the values of Et and Et, but also on the shape
of the column cross-section. Later, in 1910, Theodor von Karman, explicitly derived the
expressions of the reduced modulus pertinent to rectangular and idealized H (the web is
considered of zero area) cross-sections.

The reduced modulus Er, also called the double modulus, is calculated considering as the
starting point two important observations:

(a) When the critical load Pcr is attainted, the column changes its original linear
con�guration with a curved con�guration. The result of the change in the column geo-
metrical con�guration is the fact that the stress condition also changes from the pure
compression stress distribution �x = ��cr > �0y to a more complicated stress distribution
�x = ��cr � �Mx > �0y induced by newly created eccentric compression. It can be noticed
the change in the normal stress distribution �x from �x = ��Px to �x = ��Px � �Mx ,
when P = Pcr; correspond to the two possible equilibrium con�gurations, the straight or
curved equilibrium con�guration con�gurations. Because the axial compressive P = Pcr
remain constant the equilibrium is neutral ;

(b) The cross-section of the column subjected to eccentric compression is divided into
two areas characterized by di¤erent stress behavior due to the fact that the material is in
the plastic range. The zone where �x = ��cr � �Mx > ��cr a plastic loading takes place
and consequently, the deformation is controlled by the tangent modulus Et(�x), while
in the zone where the stress is �x = ��cr + �Mx < ��cr the material su¤ers a plastic
unloading and the deformation is controlled by modulus of elasticity E. In the case under
scrutiny, the Euler ideal column, following the physical deformation of the column, the
loading plastic zone is always located in the proximity of the axial compressive force P ,
on the inside face of the deformed member, while the unloading plastic zone is located on
the opposite side, on the outside face of the member.

Considering that the cross-section of the column has an axis of symmetry, axis yc, and
consequently, the buckling manifests in the plane of this axis, the stress distribution on
the current column cross-section is illustrated in Figure 17.63.
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Figure 17.63 Reduce Modulus Theory

Remark 79 (a) The change in the stress distribution when the curved equilibrium con-
�guration is considered is due entirely to the appearance on the column cross-section of
the bending moment M = �P � v, while the compressive axial force P remains P = Pcr
constant. The equilibrium is neutral.

(b) The compression is treated as an initial condition and only the bending produced by
the buckling is of interest.

The existence of two material behavior zones resembles the bending theory of the nonho-
mogeneous beam developed in Lecture 11. Consequently, some of the previously obtained
results, the equations (11.97) and (11.101), are used in this section by accommodating
the notation to the existing situation. It has to be noticed that in the studied case the
position of the neutral axis NA also represents the border line between the two areas, Au
and Al, whit di¤erent material behavior.

The position of the neutral axis and the equivalent rigidity are obtained from the following
equations:

Et � SAlz + E � SAuz = 0 (458)

and

yu + yl = f(h) (459)

where Au and Al are the areas of the unloading and loading zones, respectively. The
distances yu > 0 and yl > 0 are the distances from the centroids of the two areas
measured from the neutral axis. The f(h) is a function of the cross-section height h.
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Using the equations (458) and (459) the unknown position of the NA is calculated as
fraction of the cross-section height h:

The equivalent weighted �exural rigidity Keqv is then obtained as:

Keqv = Et � IAlz + E � IAuz = Er � Iz (460)

where the moments of inertia IAlz and IAuz are calculated relatively to the position of the
neutral axis (NA).

The reduced modulus Er is expressed as:

Er =
Et � IAlz + E � IAuz

Iz
(461)

where Iz is the moment of inertia of the entire cross-section calculated for the centroidal
axis Zc:

Accepting the small deformation assumption, the di¤erential equation (11.102) is then
re-written as:

dv(x)2

dx2
=

1

�(x)
=
Mz(x)

Keqv(x)
=
Mz(x)

Er � Iz
(462)

Combining equation (462) and (18) a second order di¤erential equation, similar with that
employed in the investigation of the elastic buckling of the Euler ideal column, is obtained:

Er � Iz � v(x)" + P � v(x) = 0 (463)

Using the mathematical analogy between the equations (462) and (20), the critical load
is calculated as:

P rcr =
�2 � Er � Iz

l2
(464)

and

�rcr(�) =
�2 � Er
�2

(465)
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The reduced modulus pertinent to the rectangular cross-section, shown in Figure 17.25,
is obtained following the above described formulation.

??????Figure 17.24 ?????????

The formulae (458) and (459) are re-written as:

E � b � (2 � yu) � yu � Et � b � (2 � yl) � yl = 0 (466)

2 � yu + 2 � yl = h (467)

Solving equations (466) and (467) the distances yu and yl and implicitly position of the
neutral axis NA are calculated:

yu =
1

2
h

p
Et

(
p
Et +

p
E)

(468)

yl =
1

2
h

p
E

(
p
Et +

p
E)

Substituting the results (468) into equation (461) the reduced modulus Er pertinent to
a rectangular cross-section is obtained:

Er =
Et � IAlz + E � IAuz

Iz
=
Et �

b � (2 � yl)3
3

+ E � b � (2 � yu)
3

3
b � h3
12

(469)

= 4
E � Et�p
E +

p
Et

�2

If a ration � =
Et
E
is de�ned then, the equations (468) and (469) are recasted as:
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yu =
1

2
h

p
�

(1 +
p
�)

(470)

yl =
1

2
h

1

(1 +
p
�)

and

Er = 4 � E �
�

(1 +
p
�)2

(471)

The ratio
Er
E
is plotted in Figure 17.64

Figure 17.64 Variation of Er=E

Remark 80 (a) The critical load P rcr is obtained from an iterative process;

(b) The value of the reduced modulus Er is di¢ cult to calculated and depends on the
shapes of the stress-strain curve and the cross-section, respectively;

(c) The usage of this theory implies that the bending must be present on the cross-section
for the change in stress distribution to take place and consequently, a reduced modulus
Er to be possible to manifest. The experimental results con�rm that the bending moment
appears only after change in con�gurations, from the straight line to curved, and therefore,
in reality, the axial load P never reaches the value of the calculated critical load P rcr:From
laboratory testing always critical loads inferior to the calculated P rcr are obtained:
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1.7.3 The Shanley Theory

In 1946, the American professor F.R.Shanley, in an one-page paper, explained the short-
comings of the previously exposed theories used in the evaluation of the inelastic buckling
of columns and proposed a new theoretical approach. This approach, known in the tech-
nical literature, as the Shanley�Theory, is able to solve the theoretical nonconcordances
of the Tangent Modulus and Reduced Modulus Theories. He follows �ve months later
with a second paper containing additional theoretical explanations pertinent of newly
proposed theory and experimental test results in support of the theoretical �ndings.

The Shanley Theory departs from the previously exposed theories of the inelastic buckling,
the Tangent Modulus Theory and Reduced Modulus Theory, by recognizing the physical
impossibility of the analogy between the elastic (elastic range) and inelastic (plastic range)
buckling of a column. In the case of the elastic buckling, the Euler approach, the critical
load Pcr is reached with the column in a neutral equilibrium, by considering that the
change in the equilibrium con�gurations does not produced any change in the magnitude
of the axial loading P . If this assumption is rejected and the increase of the axial load P
during the change in the equilibrium con�gurations is allowed, then, the modi�cation of
the normal stress on the cross-section, as shown in Figure 17.64, is less dramatic due to
the increase of normal stress �Px induced by the axial force P . Accordingly to Shanley
Theory, when the load P reaches the the load corresponding to P tcr the change in the
equilibrium con�guration (the bending) starts and the load P continues to increased
until the new equilibrium is obtained.

Remark 81 (a) The Shanley Theory assumption invalidates the main assumption used
in the elastic buckling calculation that the equilibrium is neutral at the bifurcation point;

(b) The values of the maximum and minimum normal stresses, illustrated in Figure 17.64,
are increased and, respectively decreased by comparison with the similar situation ex-
pressed by the Reduced Modulus Theory, due to the increase of the axial force P from P tcr
to P rcr . Consequently, the a new reduced modulus Es is calculated. Its value is bordered
by the previously calculated value of Et and Er; respectively;

Et � Es � Er (472)

(c) The di¤erential equation (54) repeatedly employed in the elastic evaluation of the ideal
column buckling is forth order ordinary di¤erential equation with constant coe¢ cients
(P is constant at the bifurcation). In the case of the inelastic buckling of a column,
accordingly to Shanley Theory, this equation becomes nonlinear in nature and a functional
relation between the axial load P and lateral displacement v(x) is established. It is obvious
that an iterative procedure is required to determine the inelastic critical load P scr.

P tcr � P scr � P rcr (473)

An informative illustration of the comparison between the critical load obtained for the
elastic and inelastic behavior consideration is shown in Figure 17.65.
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Figure 17.65 Load-De�ection Diagram for Elastic and Inelastic Behavior

The curves shown in Figure 17.65 are valid only for the case of "small deformations".
In reality, if the lateral deformation increases the "small deformation" assumption has
to be replaced and consequently, the exact formula of the curvature has to be employed.
The results obtained in that case are schematically shown with dashed line, indicating a
reduction of the critical load value with the increase in the lateral displacement.

Remark 82 (a) The critical load P scr calculated using Shanley Theory is bounded, un-
der the assumption of "small deformations", by critical loads, P tcr and P

r
cr; calculated

employing the Tangent Modulus Theory and Reduced modulus Theory, respectively.

P tcr � P scr � P rcr (474)

(b) Due to the complexity of the calculation involved in the determination of the inelastic
critical load P scr using Shanley Theory and from the observation that under the assumption
of "small deformations" this critical load is not considerably greater than the critical load
calculated using the Tangent Modulus P tcr it is reasonable to accept the later as the practical
critical load.

The theoretical results of the Shanley Theory were intensely veri�ed by numerous exper-
iments. Today, this theory is universally accepted and employed by the majority of the
structural steel codes.

1.8 Practical Evaluation of the Columns

1.8.1 Summary of Ideal Column Theoretical Cases

The theoretical cases of an ideal column characterized by di¤erent boundary conditions,
in-depth treated in the previous sections, are summarized in the Table 1. These are
the most commonly boundary conditions encountered in the structural practice and are
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used by the structural engineers in judging the buckling characteristics of the designed
columns. Table 1 contains the buckling coe¢ cient � which is used in the estimation of
the buckling length lf = :� � l:

Table 1 - Theoretical Buchling Coe¢ cients
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