
Scientific Programming 22 (2014) 201–222 201
DOI 10.3233/SPR-140379
IOS Press

Formula translation in Blitz++, NumPy
and modern Fortran: A case study
of the language choice tradeoffs

Sylwester Arabas a,∗, Dorota Jarecka a, Anna Jaruga a and Maciej Fijałkowski b

a Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
b PyPy Team

Abstract. Three object-oriented implementations of a prototype solver of the advection equation are introduced. The presented
programs are based on Blitz++ (C++), NumPy (Python) and Fortran’s built-in array containers. The solvers constitute imple-
mentations of the Multidimensional Positive-Definite Advective Transport Algorithm (MPDATA). The introduced codes serve as
examples for how the application of object-oriented programming (OOP) techniques and new language constructs from C++11
and Fortran 2008 allow to reproduce the mathematical notation used in the literature within the program code. A discussion
on the tradeoffs of the programming language choice is presented. The main angles of comparison are code brevity and syntax
clarity (and hence maintainability and auditability) as well as performance. All performance tests are carried out using free and
open-source compilers. In the case of Python, a significant performance gain is observed when switching from the standard in-
terpreter (CPython) to the PyPy implementation of Python. Entire source code of all three implementations is embedded in the
text and is licensed under the terms of the GNU GPL license.
Keywords: Object-oriented programming, advection equation, MPDATA, C++, Fortran, Python

1. Introduction

Object-oriented programming (OOP) “has become
recognised as the almost unique successful paradigm
for creating complex software” [25, Section 1.3]. It is
intriguing that, while the quoted statement comes from
the very book subtitled The Art of Scientific Comput-
ing, hardly any (if not none) of the currently opera-
tional weather and climate prediction systems – flag-
ship examples of complex scientific software – make
extensive use of OOP techniques.1

Application of OOP techniques in development of
numerical modelling software may help to:

(i) maintain modularity and separation of program
logic layers (e.g. separation of numerical al-
gorithms, parallelisation mechanisms, data in-
put/output, error handling and the description of
physical processes); and

*Corresponding author. E-mail: sarabas@igf.fuw.edu.pl.
1Fortran has been the language of choice in oceanic [12], weather-

prediction [32] and Earth system [16] modelling, and none of its
20th-century editions were object-oriented languages (for discus-
sion, see e.g. [20]).

(ii) shorten and simplify the source code and im-
prove its readability by reproducing within the
program logic the mathematical notation used
in the literature.

The first application is attainable, yet arguably cumber-
some, with procedural programming. The latter, vir-
tually impossible to obtain with procedural program-
ming, is the focus of this paper. The importance of re-
producing the mathematical notation in the code lays
primarily in the fact that code readability and brevity
significantly contribute to code maintainability [37].

The key aim of this paper is to show how OOP
techniques can be used to faithfully reproduce within
the code what can be referred to as blackboard ab-
stractions [26]. These may relate to several levels of
mathematical abstraction. Object-oriented logic can be
used to make the code resemble analytical formulae
(e.g. [35]) and/or numerical algorithms, the latter be-
ing exemplified in this paper. For this purpose, a sam-
ple implementation of a numerical scheme for solving
the advection equation is introduced in C++, Python
and modern Fortran – OOP languages commonly used
in scientific computing (see e.g. [9, Chapter 8]). Pre-

1058-9244/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved

202 S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs

sented implementations and the results of benchmark
tests provide a basis for discussion on the tradeoffs
of programming language choice. The discussion con-
cerns in principle the development of finite-difference
solvers for partial differential equations, but is likely
applicable to some extent to the scientific program-
ming in general.

All three programs include an equally structured im-
plementation of the two-dimensional version of the
Multidimensional Positive Definite Advective Trans-
port Algorithm (MPDATA) [27]. MPDATA is an exam-
ple of a numerical procedure used in weather, climate,
ocean and solar simulation systems (e.g. [1,8,10,39],
respectively). The basic MPDATA scheme presented
herein is complex enough to contain a wide range of
mathematical abstractions that can be represented us-
ing OOP constructs, yet it is simple enough to allow
inclusion of the entire source code within the paper
text. All relevant MPDATA formulae are given in the
text alongside corresponding code fragments allowing
comparison of the relevant syntax with the mathemat-
ical notation. These formulae are presented without
derivation or detailed discussion (see [28] for a recent
review of MPDATA-based techniques including an in-
troductory description of the algorithm and an exhaus-
tive list of references).

The paper is structured as follows. In Section 2 we
introduce the “formula translation” part of the three
implementations briefly describing the algorithm itself
and discussing where and how the OOP techniques
were applied in its implementation. The remaining part
of the implementations – the solver logic – is presented
in Appendix A. Usage example is given in Appendix B.
Section 3 covers performance evaluation of the three
implementations. Section 4 covers discussion of the
tradeoffs of the programming language choice. Sec-
tion 5 closes the article with a brief summary.

The entire code is licensed under the terms of the
GNU General Public License version 3 [29]. All list-
ings include line numbers printed to the left of the
source code, with separate numbering for C++ (list-
ings prefixed with C, black frame),

Python (listings prefixed with P, blue frame2) and

2The colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140379.

Fortran (listings prefixed with F, red frame).

Programming language constructs when inlined in the
text are typeset in bold, e.g. GOTO 2.

2. Implementation of the formulae

Double-precision floating-point format is used in all
three implementations. The codes begin with the fol-
lowing definitions:

which provide a convenient way of switching to differ-
ent precision.3

All codes are structured in a way allowing compila-
tion of the code in exactly the same order as presented
in the text within one source file.

The language syntax and OOP nomenclature are
used without introduction in the paper. For an overview
of OOP in context of C++, Python and Fortran, con-
sult for example [31, Part III], [22, Chapter 5] and [18,
Chapter 11], respectively.

2.1. Array containers

MPDATA is, in its most basic form presented herein,
a solver for systems of advection equations of the fol-
lowing form:

∂tψ = −∇ · (�vψ) (1)

that describe evolution of a scalar field ψ transported
by the fluid flow with velocity �v. Solution of Eq. (1) us-
ing MPDATA implies discretisation onto a grid of the
scalar field ψ and the Courant number vector field �C.
An “x” component of the Courant number field is de-
fined as Cx = vx · Δt

Δx , where Δt is the solver timestep
and Δx is the grid spacing.

Presented C++ implementation of MPDATA is
built upon the Blitz++ library.4 Blitz offers object-
oriented representation of n-dimensional arrays, and

3Fortran’s selected_real_kind() intrinsic function may be used
instead to improve portability.

4Blitz++ is a C++ class library for scientific computing which
uses the expression templates technique to achieve high perfor-
mance, see http://sf.net/projects/blitz/.

S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs 203

array-valued mathematical expressions. In particular,
it offers loop-free notation for array arithmetics that
does not incur creation of intermediate temporary ob-
jects. Blitz++ is a header-only library5 – to use it, it
is enough to include the appropriate header file, and
optionally expose the required classes to the present
namespace:

Here arr_t, rng_t and idx_t serve as alias identifiers
and are introduced in order to shorten the code.

The power of Blitz++ comes from the ability to
express array expressions as objects. In particular, it
is possible to define a function that returns an ar-
ray expression; i.e. not the resultant array, but an ob-
ject representing a “recipe” defining the operations to
be performed on the arguments. As a consequence,
the return types of such functions become unintelligi-
ble. Luckily, the auto return type declaration from the
C++11 standard allows to simplify the code signifi-
cantly, even more if used through the following prepro-
cessor macro:

For example, definition of a function returning its
array-valued argument doubled, reads: auto f(arr_t x)
return_macro(2 ∗ x). This is the only preprocessor
macro defined herein. The call to blitz ::
safeToReturn() function is included in order to ensure
that all arrays involved in the returned expression con-
tinue to exist in the caller scope.

For the Python implementation of MPDATA, the
NumPy6 package is used. In order to make the code
compatible with both the standard CPython as well as
the alternative PyPy implementation of Python [5], the
following sequence of import statements is used:

5Blitz++ requires linking with libblitz if debug mode is used.
6NumPy is a Python package for scientific computing offering

support for multi-dimensional arrays and a library of numerical al-
gorithms, see http://numpy.org/.

First, the PyPy’s built-in NumPy implementation
named numpypy is imported if applicable (i.e. if run-
ning PyPy), and the lazy evaluation mode is turned
on through the set_invalidation(False) call. PyPy’s
lazy evaluation obtained with the help of a just-in-time
compiler enables to achieve an analogous to Blitz++
temporary-array-free handling of array-valued expres-
sions (see discussion in Section 3). Second, to match
the settings of C++ and Fortran compilers used
herein, the NumPy package is instructed to ignore any
floating-point errors, if such an option is available in
the interpreter.7 The above lines conclude all code
modifications that needed to be added in order to run
the code with PyPy.

Among the three considered languages only Fortran
is equipped with built-in array handling facilities of
practical use in high-performance computing. There-
fore, there is no need for using an external package
as with C++ and Python. Fortran array-handling fea-
tures are not object-oriented, though (e.g. it is impos-
sible to overload array operators or to provide custom
constructor-like initialisation logic).

2.2. Containers for sequences of arrays

As discussed above, discretisation in space of the
scalar field ψ(x, y) into its ψ[i,j] grid representation re-
quires floating-point array containers. In turn, discreti-
sation in time requires a container class for storing se-
quences of such arrays, i.e. {ψ[n], ψ[n+1]}. Similarly
the components of the vector field �C are in fact a {C[x],
C[y]} array sequence.

Using an additional array dimension to represent
the sequence elements is not considered for two rea-
sons. First, the C[x] and C[y] arrays constituting the
sequence have different sizes (see discussion of the
Arakawa-C grid in Section 2.3). Second, the order of
dimensions would need to be different for different lan-
guages to assure that the contiguous dimension is used
for one of the space dimensions and not for time levels.

In the C++ implementation, the Boost8 ptr_vector
class is used to represent sequences of Blitz++ arrays
and at the same time to handle automatic freeing of
dynamically allocated memory. The ptr_vector class

7numpy.seterr() is not supported in PyPy as of version 1.9.
8Boost is a free and open-source collection of peer-reviewed

C++ libraries available at http://boost.org/. Several parts of Boost
have been integrated into or inspired new additions to the C++ stan-
dard.

204 S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs

is further customised by defining a derived structure
with the element-access [] operator overloaded with a
modulo variant:

Consequently the last element of any such sequence
may be accessed at index −1, the last but one at −2,
and so on.

In the Python implementation, the built-in tuple
type is used to store sequences of NumPy arrays. Em-
ployment of negative indices for handling from-the-
end addressing of elements is a built-in feature of all
sequence containers in Python.

Fortran does not feature any built-in sequence con-
tainer capable of storing arrays, hence a custom
arrvec_t type is introduced:

The arr_t type is defined solely for the purpose of
overcoming the limitation of lack of an array-of-
arrays construct, and its only member field is a two-
dimensional array. An array of arr_t is used here-
inafter as a container for sequences of arrays.

The arrptr_t type is defined solely for the purpose
of overcoming Fortran’s limitation of not supporting
allocatables of pointers. The arrptr_t’s single mem-
ber field is a pointer to an instance of arr_t. Creating
an allocatable of arrptr_t, instead of a multi-element
pointer of arr_t, ensures automatic memory dealloca-
tion.

Type arrptr_t is used to implement the from-the-
end addressing of elements in arrvec_t. The array data
is stored in the arrs member field (of type arr_t). The
at member field (of type arrptr_t) stores pointers to
the elements of arrs. It has double the length of arrs
and is initialised in a cyclic manner so that the −1 el-
ement of at points to the last element of arrs, and so
on. Assuming psi is an instance of arrptr_t, the (i, j)
element of the n-th array in psi may be accessed with
psi%at(n)%p%a(i, j).

The ctor(n) method initialises the container for a
given number of elements n. The init(n, i, j) method
initialises the n-th element of the container with a
newly allocated 2D array spanning indices i(1):i(2),
and j(1):j(2) in the first, and last dimensions respec-
tively.9

2.3. Staggered grid

The so-called Arakawa-C staggered grid [3] de-
picted in Fig. 1 is a natural choice for MPDATA. As
a consequence, the discretised representations of the

Fig. 1. A schematic of the Arakawa-C grid. (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/SPR-140379.)

9In Fortran, when an array is passed as a function argument its
base is locally set to unity, regardless of the setting at the caller
scope.

S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs 205

ψ scalar field, and each component of the �C vector
field are defined over different grid point locations.
In mathematical notation this can be indicated by us-
age of fractional indices, e.g. C[x]

[i−1/2,j], C[x]
[i+1/2,j],

C[y]
[i,j−1/2] and C[y]

[i,j+1/2] to depict the grid values of

the �C vector components surrounding ψ[i,j]. However,
fractional indexing does not have a built-in counterpart
in any of the employed programming languages. A de-
sired syntax would translate i− 1

2 to i−1 and i+ 1
2 to i.

OOP offers a convenient way to implement such nota-
tion by overloading the + and − operators for objects
representing array indices.

In the C++ implementation, first a global instance
h of an empty structure hlf_t is defined, and then the
plus and minus operators for hlf_t and rng_t are over-
loaded:

This way, the arrays representing vector field compo-
nents can be indexed using (i + h, j), (i − h, j) etc.,
where h represents the half.

In NumPy, in order to prevent copying of array data
during slicing, one needs to operate on the so-called ar-
ray views. Array views are obtained when indexing the
arrays with objects of the Python’s built-it slice type
(or tuples of such objects in case of multi-dimensional
arrays). Python forbids overloading of operators of
built-in types such as slices, and does not define addi-
tion/subtraction operators for slice and int pairs. Con-
sequently, a custom logic has to be defined not only
for fractional indexing, but also for shifting the slices
by integer intervals (i ± 1). It is implemented here by
declaring a shift class with the adequate operator over-
loads:

and two instances of it to represent unity and half in
expressions like i + one, i + hlf, where i is an instance

of slice:10

In the Fortran implementation, fractional array in-
dexing is obtained through definition and instantiation
of an object representing the half, and having appropri-
ate operator overloads:

2.4. Array index permutations

Hereinafter, the πda,b symbol is used to denote a
cyclic permutation of an order d of a set {a, b}. It is
used to generalise the MPDATA formulae into multiple
dimensions using the following notation:

1∑

d=0

ψ[i,j]+πd
1,0

≡ ψ[i+1,j] + ψ[i,j+1]. (2)

Blitz++ ships with the RectDomain class (aliased
here as idx_t) for specifying array ranges in multi-
ple dimensions. The π permutation is implemented in
C++ as a function pi() returning an instance of idx_t.
In order to ensure compile-time evaluation, the per-
mutation order is passed via the template parameter d
(note the different order of i and j arguments in the two

10One could argue that not using an own implementation of a
slice-representing class in NumPy is a design flaw – being able to
modify behaviour of a hypothetical numpy.slice class through inher-
itance would allow to implement the same behaviour as obtained in
listing P.3 without the need to represent the unity as a separate object.

206 S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs

template specialisations):

NumPy uses tuples of slices for addressing multi-
dimensional array with a single object. Therefore, the
following definition of function pi() suffices to repre-
sent π:

Fortran does not feature an analogous mechanism
for specifying array ranges in multiple dimensions us-
ing a single entity. As a workaround, in the Fortran
implementation, pi() returns a pointer to the array ele-
ments specified by i and j interpreted as (i, j) or (j, i)
depending on the value of the argument d. In addition
to pi(), a helper span() function returning the length of
one of the vectors passed as argument is defined:

The span() function is used to shorten the declarations
of arrays to be returned from functions in the Fortran
implementation (see listings F.7 and F.12–F.15).

It is worth noting here that the C++ implementation
of pi() is branchless thanks to employment of template
specialisation. With Fortran one needs to rely on com-
piler optimisations to eliminate the conditional expres-
sion within pi() that depends on value of d which is
always known at compile time.

2.5. Donor-cell formulae

MPDATA is an iterative algorithm in which each it-
eration takes the form of the so-called donor-cell for-
mula (which itself is a first-order advection scheme).

MPDATA and donor-cell are explicit forward-in-
time algorithms – they allow to predict ψ[n+1] as a
function of ψ[n] where n and n+1 denote two adjacent
time levels. The donor-cell scheme may be written as
[27, Eq. (2)]:

ψ[n+1]
[i,j] = ψ[n]

[i,j]

−
N−1∑

d=0

(
F
[
ψ[n]

[i,j],ψ
[n]
[i,j]+πd

1,0
,C[d]

[i,j]+πd
1/2,0

]

− F
[
ψ[n]

[i,j]+πd
−1,0

,ψ[n]
[i,j],C

[d]
[i,j]+πd

−1/2,0

])
,

(3)

where N is the number of dimensions, and F is the
so-called flux function [27, Eq. (3)]:

F (ψL,ψR,C)

= max(C, 0) · ψL + min(C, 0) · ψR

=
C + |C|

2
· ψL +

C − |C|
2

· ψR. (4)

In C++, the flux function takes the following form:

Equation (3) is split into the terms under the sum-
mation (effectively the 1-dimensional donor-cell for-
mula):

S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs 207

and the actual two-dimensional donor-cell formula:

In Python, the same formulae are expressed as follows:

The Fortran counterparts are:

The brevity of the code in the above listings as well
as its similarity to the mathematical notation is the
main point of this paper. The “formula translation” fea-
tures include:

• loop-free notation;
• array-valued functions enabling reuse of sub-

expressions;
• fractional indexing obtained with the help of op-

erator overloading;
• dimension-independent indexing with the help of

permutation functions.

The same features are applied to translation of more
complex formulae in the following section.

2.6. MPDATA formulae

MPDATA introduces corrective steps to the algo-
rithm defined by Eqs (3) and (4). Each corrective step
has the form of a donor-cell pass, with the Courant
number fields corresponding to the MPDATA antidif-
fusive velocities of the following form (Eqs (13), (14) in
[27]):

C ′[d]
[i,j]+πd

1/2,0

=
∣∣C[d]

[i,j]+πd
1/2,0

∣∣ ·
[
1 −

∣∣C[d]
[i,j]+πd

1/2,0

∣∣] ·A[d]
[i,j](ψ)

−
N∑

q=0,q �=d

C[d]
[i,j]+πd

1/2,0
· C[q]

[i,j]+πd
1/2,0

·B[d]
[i,j](ψ),

(5)

where ψ and C represent values from the previous it-
eration and where:

C
[q]
[i,j]+πd

1/2,0

=
1
4
·
(
C[q]

[i,j]+πd
1,1/2

+ C[q]
[i,j]+πd

0,1/2

+ C
[q]
[i,j]+πd

1,−1/2
+ C

[q]
[i,j]+πd

0,−1/2

)
. (6)

208 S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs

For positive-definite ψ, the A and B terms take the fol-
lowing form:11

A[d]
[i,j] =

ψ[i,j]+πd
1,0

− ψ[i,j]

ψ[i,j]+πd
1,0

+ ψ[i,j]
, (7)

B[d]
[i,j] =

1
2

(
ψ[i,j]+πd

1,1
+ ψ[i,j]+πd

0,1
− ψ[i,j]+πd

1,−1

− ψ[i,j]+πd
0,−1

)
/
(
ψ[i,j]+πd

1,1
+ ψ[i,j]+πd

0,1

+ ψ[i,j]+πd
1,−1

+ ψ[i,j]+πd
0,−1

)
. (8)

If the (positive-defined) denominator in Eqs (7) or
(8) equals zero for a given i and j, the correspond-
ing A[i,j] and B[i,j] are set to zero. This may be con-
veniently represented with the where construct in all
three considered languages:

The A term defined in Eq. (7) takes the following form:

11Since ψ � 0, |A| � 1 and |B| � 1. See [28, Section 4.2] for
description of adaptation of the formulae for advection of fields of
variable sign.

The B term defined in Eq. (8) takes the following form:

Equation (6) takes the following form:

S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs 209

Equation (5) takes the following form:

The above listings conclude the formula-translation
part of this paper. Implementation of a prototype MP-
DATA solver using the above code is presented in Ap-
pendix A.

3. Performance evaluation

3.1. Setup

The three introduced implementations of MPDATA
were tested with the following setups employing free
and open-source tools:

C++:

• GCC g++ 4.8.012 and Blitz++ 0.10
• LLVM Clang 3.2 and Blitz 0.10

Python:

• CPython 2.7.3 and NumPy 1.7
• PyPy 1.9.0 with built-in NumPy implementa-

tion

Fortran:

• GCC gfortran 4.8.012

12GNU Compiler Collection packaged in the Debian’s gcc-
snapshot_20130222-1.

The performance tests were run on a Debian and
an Ubuntu GNU/Linux systems with the above-listed
software obtained via binary packages from the dis-
tributions’ package repositories (most recent package
versions at the time of writing). The tests were per-
formed on two 64-bit machines equipped with an
AMD Phenom™ II X6 1055T (800 MHz) and an Intel®

Core™ i5-2467M (1.6 GHz) processors.
For both C++ and Fortran, the compilers were in-

voked with the −Ofast and the −march = native op-
tions. The CPython interpreter was invoked with the
−OO option.

In addition to the standard Python implementation
CPython, the Python code was tested with PyPy. PyPy
is an alternative implementation of Python featuring
a just-in-time compiler. PyPy includes an experimen-
tal partial re-implementation of NumPy that compiles
NumPy expressions into native assembler. Thanks to
employment of lazy evaluation of array expressions
(cf. Section 2.1) PyPy allows to eliminate the use of
temporary matrices for storing intermediate results,
and to perform multiple operations on the arrays within
a single array index traversal.13 Consequently, PyPy al-
lows to overcome the same performance-limiting fac-
tors as those addressed by Blitz++, although the un-
derlying mechanisms are different. In contrast to other
solutions for improving performance of NumPy-based
codes such as Cython,14 numexpr15 or Numba,16 PyPy
does not require any modifications to the code. Thus,
PyPy may serve as a drop-in replacement for CPython,
ready to be used with previously-developed codes.

The same set of tests was run with all four setups.
Each test set consisted of 16 program runs. The test
programs are analogous to the example code presented
in Appendix B. The tests were run with different grid
sizes ranging from 64× 64 to 2048× 2048. The Gaus-
sian impulse was advected for nt = 224/(nx · ny)
timesteps, in order to assure comparable timing accu-
racy for all grid sizes (224 chosen arbitrarily). Three
MPDATA iterations were used (i.e. two corrective
steps). The tests were run multiple times; program
start-up, data loading, and output verification times
were subtracted from the reported values (see caption
of Fig. 3 for details).

13Lazy evaluation available in PyPy 1.9 has been temporarily re-
moved from PyPy during a refactoring of the code. It’ll be reinstan-
tiated in the codebase as soon as possible, but past PyPy 2.0 release.

14See http://cython.org.
15See http://code.google.com/p/numexpr/.
16See http://numba.pydata.org/.

210 S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs

3.2. Results

Figure 2 presents a plot of the peak memory use17

(identical for both considered CPUs) as a function of
grid size. The plotted values are normalised by the
nominal size of all data arrays used in the program (i.e.
two (nx + 2) × (ny + 2) arrays representing the two
time levels of ψ, a (nx + 1) × (ny + 2) array rep-
resenting the C[x] component of the Courant number
field, a (nx + 2) × (ny + 1) array representing the
C[y] component, and two pairs of arrays of the size
of C[x] and C[y] for storing the antidiffusive veloc-
ities, all composed of 8-byte double-precision float-
ing point numbers). Plotted statistics reveal a notable
memory footprint of the Python interpreter itself for
both CPython and PyPy, losing its significance for do-
mains larger than 1024×1024. The roughly asymptotic
values reached in all four setups for grid sizes larger
that 1024×1024 are indicative of the amount of tempo-
rary memory used for array manipulation. PyPy- and
Blitz++-based setups consume notably less memory

Fig. 2. Memory consumption statistics for the test runs described in
Section 3 plotted as a function of grid size. Peak resident set size (rss)
values are normalised by the size of data that needs to be allocated
in the program to store all declared grid-sized arrays. Asymptotic
values reached at the largest grid sizes are indicative of temporary
storage requirements. (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/SPR-140379.)

17The resident set size (rss) as reported by the GNU time utility
(version packaged in Debian as 1.7-24).

than Fortran and CPython. This confirms the effective-
ness of the just-in-time compilation (PyPy) and the
expression-template technique (Blitz++) for elimina-
tion of temporary storage during array operations.

The CPU time statistics presented in Figs 3 and 4
reveal minor differences between results obtained with
the two different processors. Presented results lead to
the following observations (where by referring to lan-
guage names, only the results obtained with the herein
considered program codes, and software/hardware
configurations are meant):

• Fortran gives shortest execution times for any do-
main size;

• C++ execution times are less than twice those of
Fortran for grids larger than 256×256;

• CPython requires from around 4 to almost 10
times more CPU time than Fortran depending on
the grid size;

• PyPy execution times are in most cases closer to
C++ than to CPython.

Fig. 3. Execution time statistics for the test runs described in Sec-
tion 3 plotted as a function of grid size. Values of the total user mode
CPU time are normalised by the grid size (nx · ny) and the number
of timesteps nt = 224/(nx · ny). The time reported for an nt = 0
run for a corresponding domain size is subtracted from the values
before normalisation. Both the nt = 0 and nt = 224/(nx · ny)
runs are repeated three times and only the shortest time is taken
into account. Results obtained with an Intel® Core™ i5 1.6 GHz
processor. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140379.)

S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs 211

Fig. 4. Same as Fig. 3 for an AMD Phenom™ II 800 MHz pro-
cessor. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140379.)

The support for OOP features in gfortran, the NumPy
support in PyPy, and the relevant optimisation mecha-
nisms in GCC are still in active development and hence
the performance with some of the setups may likely
change with newer versions of these packages.

It is worth mentioning, that even though the three
implementations are equally structured, the three con-
sidered languages have some inherent differences in-
fluencing the execution times. Notably, while Fortran
and Blitz++ offer runtime array-bounds and array-
shape checks as options not intended for use in pro-
duction binaries, NumPy performs them always. Addi-
tionally, the C++ and Fortran setups may, in principle,
benefit from auto-vectorisation features which do not
yet have counterparts in CPython or PyPy. Finally, For-
tran uses different ordering for storing array elements
in memory, but since all tests were carried out using
square grids, this should not have had any impact on
the performance.18

4. The tradeoffs of language choice

The timing and memory usage statistics presented in
Figs 2–4 reveal that, in the presented case, no single

18Both Blitz++ and NumPy support Fortran’s column-major or-
dering as well, however this feature is still missing from PyPy’s built-
in NumPy implementation as of PyPy 1.9.

language/library/compiler setup corresponds to both
shortest execution time and smallest memory footprint.
Yet, performance is not the only criterion for the selec-
tion of a given language. Presented case study allows
as well to assess other language characteristics that de-
fine the tradeoffs of language choice.

4.1. Representability of blackboard abstractions

It was shown in Section 2 that C++11/Blitz++,
Python/NumPy and Fortran 2008 provide comparable
functionality in terms of matching the blackboard ab-
stractions within the program code. Taking into ac-
count solely the part of code representing particular
formulae, for instance Eq. (5) and listings C.14, P.13,
F.15, all three languages allow to match (or surpass)
LATEX in its brevity of formula translation syntax. All
three languages were shown to be capable of providing
mechanisms to compactly represent such abstractions
as:

• loop-free array arithmetics;
• functions returning array-valued expressions;
• permutations of array indices allowing dimen-

sion-independent definitions of functions (see e.g.
listings C.8 and C.9, P.7 and P.8, F.7 and F.8);

• fractional indexing of arrays corresponding to
employment of a staggered grid.

Making use of features such as loop-free arithmetics
not only shortens the code, but also enables the com-
piler or library authors to relieve the user (i.e. sci-
entific programmer) from hand-coding optimisations
(e.g. loop order choice). Hand-coded optimisations –
code rearrangements aimed solely at the purpose of in-
creasing performance – were long recognised as hav-
ing a strong negative impact when debugging and
maintenance are considered [15], and are generally ad-
vised to be avoided [21, Section 3.12].

Three issues specific to Fortran that resulted in em-
ployment of a more repetitive or cumbersome syntax
than in C++ or Python were observed:

• Fortran lacks support for specifying array ranges
in multiple dimensions with a single entity (cf. tu-
ples of slices in NumPy and blitz::RectDomain);

• Fortran does not feature a mechanism allowing to
reuse a single piece of code (algorithm) with dif-
ferent data types (compare e.g. listings C.15, P.14
and F.17) such as templates in C++ and the so-
called “duck typing” in Python;

212 S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs

• Fortran does not allow a function call to appear
on the left-hand side of assignment (see e.g. how
the ptr pointers were used as a workaround in the
cyclic_fill_halos method in listing F.20);

• Fortran lacks support for arrays of arrays (cf. Sec-
tion 2.2).

Interestingly, the limitation in extendability via inher-
itance was found to exist partially in NumPy as well
(see Footnote 10). The lack of a counterpart in Fortran
to the C++ template mechanism was identified in [7]
as one of the key deficiencies of Fortran when com-
pared with C++ in context of applicability to object-
oriented scientific programming.

4.2. Developers’ community and libraries

The size of the programmers’ community of a given
language influences the availability of: trained person-
nel, reusable software components and information re-
sources. It also affects the maturity and quality of com-
pilers and tools. Fortran is a domain-specific language
while Python and C++ are general-purpose languages
with disproportionately larger users’ communities. The
OOP features of Fortran have not gained wide popular-
ity among users [38].19 Fortran is no longer routinely
taught at the university computer science departments
[14], in contrast to C++ and Python. An example of
decreasing popularity of Fortran in academia is the dis-
continuation of Fortran printed editions of the “Numer-
ical Recipes” series of Press et al. (as of the third edi-
tion, the C++ version is the only one).

Blitz++ is one of several packages that offer high-
performance object-oriented array manipulation func-
tionality with C++ (and is not necessarily optimal for
every purpose [13]). In contrast, the NumPy package
became a de-facto standard solution for Python. Con-
sequently, numerous Python libraries adopted NumPy
but there are apparently very few C++ libraries of-
fering Blitz++ support out of the box (the gnuplot-
iostream used in listing C.20 being a much-appreciated
counterexample). However, Blitz++ allows to inter-
face with virtually any library (including Fortran li-
braries), by resorting to referencing the underlying
memory with raw pointers.

The availability and maturity of libraries that offer
object-oriented interfaces differ among the three con-
sidered languages. The built-in standard libraries of

19An anecdotal yet significant example being the incomplete sup-
port for syntax-highlighting of modern Fortran in Vim and Emacs
editors (at the time of writing).

Python and C++ are richer than those of Fortran and
offer versatile data types, collections of algorithms and
facilities for interaction with host operating system. In
the authors’ experience, the small popularity of OOP
techniques among Fortran users is reflected in the li-
brary designs (including the Fortran’s built-in library
routines). What makes correct use of external libraries
less convenient with Fortran is the lack of standard ex-
ception handling mechanism, a feature long and much
requested by the numerical community [24, Foreword].

The three languages differ as well with regard to
availability of mechanisms (either built-in or available
in external libraries) for handling concurrent computa-
tions. For instance, GCC supports OpenMP with For-
tran and C++ what allows to easily leverage shared-
memory parallelisation possibilities of multi-core pro-
cessors. There is no equivalent built-in solution for
multi-threading in CPython or PyPy. Fortan 2008 stan-
dard includes the “coarray” built-in parallel program-
ming model for which counterparts are available as ex-
ternal libraries in case of C++ and Python. Implemen-
tations of the Message Passing Interface (MPI) for han-
dling communication in distributed-memory setups are
available for all three languages.

4.3. Productivity, ease of use and misuse

The factors influencing the development and main-
tenance time/cost are of particular importance in scien-
tific computing [36]. Among the three compared envi-
ronments, Python gains significantly if code length or
coding time is prioritised (see also discussion in [17]).
Python has already been the language of choice for sci-
entific software projects having code clarity or ease of
use as the first requirement (see e.g. [4]). PyPy’s ca-
pability to improve performance of unmodified Python
code may make Python a favourable choice even if
high performance is important, especially if a com-
bined measure of performance and development cost is
to be considered.

Using the number of lines of code or the number
of distinct language keywords needed to implement
a given logic as measures of syntax brevity, Python
clearly surpasses its rivals. Python was developed with
emphasis on code readability and object-orientation.
Arguably, taking it to the extreme – Python uses line
indentation to define blocks of code and treats even a
single integer as an object. As a consequence, Python
is relatively easy to learn and easy to teach.

Fortran’s lack of an exception mechanism poses a
misuse risk when using both internal and external li-

S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs 213

brary calls. The lack of exceptions results in a default
policy to ignore recoverable errors. With no additional
error-handling code, a Fortran program may silently
continue after an error – additional code is needed to
detect the error. In C++ and Python, such program
will stop by default, while additional code may be in-
troduced to recover from the error condition. Python
does not feature such notorious mechanisms as the pre-
processor in C++ and the implicit typing in Fortran,
making it less prone to misuse.

Python implementations do not expose users to com-
pilation or linking processes. As a result, Python-
written software is easier to deploy and share, es-
pecially if multiple architectures and operating sys-
tems are targeted. However, there exist tools such as
CMake20 that allow to efficiently automate building,
testing and packaging of C++ and Fortran programs.

It is worth noting one advantage of the C++/
Blitz++ setup. Blitz++ ensures temporary-array-free
computations by design [34] avoiding unintentional
performance loss. In contrast, with both Fortran and
Python, the memory footprint caused by employment
of temporary objects in array arithmetics is dependant
on compiler choice or the level of optimisations.

Finally, Python is definitely easiest to debug among
the three languages. Great debugging tools for C++ do
exist, however the debugging and development is often
hindered by indecipherable compiler messages flooded
with lengthy type names stemming from employment
of templates. Support for the OOP features of Fortran
among compilers, debuggers and other programming
aids remains immature at the time of writing.

5. Summary and outlook

Three implementations of a prototype solver for the
advection equation were introduced. The solvers are
based on MPDATA – an algorithm of particular appli-
cability in geophysical fluid dynamics [28]. All imple-
mentations follow the same object-oriented structure
but are implemented in three different languages (or
language–library pairs):

• C++ with Blitz++;
• Python with NumPy;
• Fortran.

20CMake is a family of open-source, cross-platform tools au-
tomating building, testing and packaging of C/C++/Fortran soft-
ware, see http://cmake.org/.

Presented programs were developed making use of
such recent developments as support for C++11 and
Fortran 2008 in GCC, and the NumPy support in the
PyPy implementation of Python. The fact that all con-
sidered standards are open and the employed tools im-
plementing them are free and open-source is certainly
an advantage ([2], [33, Section 28.2.5]).

The key conclusion is that all considered language/
library/compiler setups offer possibilities for using
OOP to compactly represent the mathematical abstrac-
tions within the program code. This creates the poten-
tial to improve code readability and brevity,

• contributing to its auditability, indispensable for
credible and reproducible research in computa-
tional science [19,23,30]; and

• helping to keep the programs maintainable and
avoiding accumulation of the code debt21 that be-
sets scientific software in such domains as climate
modelling [11].

The performance evaluation revealed that:

• the Fortran setup offered shortest execution
times,

• it took the C++ setup less than twice longer to
compute than Fortran,

• C++ and PyPy setups offered significantly
smaller memory consumption than Fortran and
CPython for larger domains,

• the PyPy setup was roughly twice slower than
C++ and up to twice faster than CPython.

The three equally-structured implementations required
ca. 200, 300 and 500 lines of code in Python, C++ and
Fortran, respectively. It is the authors’ impression that
these figures are somehow indicative of the program-
ming effort.

In addition to the source code presented within the
text, a set of tests and build-/test-automation scripts al-
lowing to reproduce the analysis and plots presented in
Section 3 are all available at the project repository,22

and are released under the GNU GPL license [29]. The
authors encourage to use the presented codes for teach-
ing and benchmarking purposes.

The OOP design enhances the possibilities to reuse
and extend the presented code. Development is un-
derway of an object-oriented C++ library featuring
concepts presented herein, supporting integration in
one to three dimensions, handling systems of equa-
tions with source terms, providing miscellaneous op-

21See [6] for discussion of technical/code debt.
22git repository at http://github.com/igfuw/mpdata-oop/.

214 S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs

tions of MPDATA and several parallel processing ap-
proaches.23

Acknowledgements

We thank Piotr Smolarkiewicz and Hanna
Pawłowska for their help throughout the project. This
study was partly inspired by the lectures of Lech
Łobocki.

Tobias Burnus, Julian Cummings, Ondřej Čertík,
Patrik Jonsson, Arjen Markus, Zbigniew Piotrowski,
Davide Del Vento and Janus Weil provided valuable
feedback to the initial version of the manuscript and/or
responses to questions posted to Blitz++ and gfortran
mailing lists.

The final version of the manuscript benefited from
suggestions of two anonymous reviewers.

SA, AJ and DJ acknowledge funding from the Pol-
ish National Science Centre (Project No. 2011/01/N/
ST10/01483).

Part of the work was carried out during a visit of
SA to the National Center for Atmospheric Research
(NCAR) in Boulder, CO, USA. NCAR is operated by
the University Corporation for Atmospheric Research.
The visit was funded by the Foundation for Polish Sci-
ence (START programme).

Development of NumPy support in PyPy was led by
Alex Gaynor, Matti Picus and MF.

Appendix A. Prototype solvers

The following sections provide a complete descrip-
tion of a minimal example of application of the formu-
lae “translated” into C++, Python and Fortran in the
main body of the paper.

A.1. Halo regions

The MPDATA formulae defining ψ[n+1]
[i,j] as a func-

tion of ψ[n]
[i,j] (discussed in the following sections) fea-

ture terms such as ψ[i−1,j−1]. One way of assuring va-
lidity of these formulae on the edges of the domain
(e.g. for i = 0) is to introduce the so-called halo region
surrounding the domain. The method of populating the
halo region with data depends on the boundary condi-
tion type. Employment of the halo-region logic implies
repeated usage of array range extensions in the code
such as i � i± halo.

23Git repository at http://github.com/igfuw/libmpdataxx.

An ext() function is defined in all three implementa-
tion, in order to simplify coding of array range exten-
sions:

Consequently, a range depicted by i± 1/2 may be ex-
pressed in the code as ext(i, h). In all three implemen-
tations, the ext() function accept the second argument
to be an integer or a “half” (cf. Section 2.3).

A.2. Prototype solver

The tasks to be handled by a prototype advection
equation solver proposed herein are:

(i) storing arrays representing the ψ and �C fields
and any required housekeeping data,

(ii) allocating/deallocating the required memory,
(iii) providing access to the solver state,
(iv) performing the integration.

In the following C++ definition of the solver struc-
ture, task (i) is represented with the definition of the
structure member fields; task (ii) is split between the
solver’s constructor and the destructors of arrvec_t;
task (iii) is handled by the accessor methods; task (iv)

S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs 215

is handled within the solve() method:

The solver structure is an abstract definition (contain-
ing a pure virtual method) requiring its descendants to
implement at least the advop() method which is ex-
pected to fill psi[n + 1] with an updated (advected)
values of psi[n]. The two template parameters bcx_t
and bcy_t allow the solver to operate with any kind
of boundary condition structures that fulfil the require-
ments implied by the calls to the methods of bcx and
bcy, respectively.

The donor-cell and MPDATA schemes both require
only the previous state of an advected field in order
to advance the solution. Consequently, memory for
two time levels (ψ[n] and ψ[n+1]) is allocated in the
constructor. The sizes of the arrays representing the
two time levels of ψ are defined by the domain size
(nx × ny) plus the halo region. The size of the halo
region is an argument of the constructor. The cycle()

method is used to swap the time levels without copying
any data.

The arrays representing the C[x] and C[y] compo-
nents of �C, require (nx+1)×ny and nx× (ny+1) el-
ements, respectively (being laid out on the Arakawa-C
staggered grid).

Python definition of the solver class follows closely
the C++ structure definition:

The key difference stems from the fact that, unlike
Blitz++, NumPy does not allow an array to have arbi-
trary index base – in NumPy the first element is always
addressed with 0. Consequently, while in C++ (and
Fortran) the computational domain is chosen to start at
(i = 0, j = 0) and hence a part of the halo region to
have negative indices, in Python the halo region starts
at (0, 0).24 However, since the whole halo logic is hid-

24The reason to allow the domain to begin at an arbitrary index is
mainly to ease debugging in case the code would be used in parallel

216 S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs

den within the solver, such details are not exposed to
the user. The bcx and bcy boundary-condition speci-
fications are passed to the solver through constructor-
like __init__() method as opposed to template param-
eters in C++.

The above C++ and Python prototype solvers, in
principle, allow to operate with any boundary con-
dition objects that implement methods called from
within the solver. This requirement is checked at
compile-time in the case of C++, and at run-time in
the case of Python. In order to obtain an analogous be-
haviour with Fortran, it is required to define, prior to
definition of a solver type, an abstract type with de-
ferred procedures having abstract interfaces (sic!, see
Table 2.1 in [26], for a summary of approximate corre-
spondence of OOP nomenclature between Fortran and
C++):

Having defined the abstract type for boundary-condi-
tion objects, a definition of a solver class following
closely the C++ and Python counterparts may be pro-
vided:

computations using domain decomposition where each subdomain
could have its own index base corresponding to the location within
the computational domain.

S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs 217

A.3. Periodic boundaries

The solver definition described in Section A.2 re-
quires a given boundary condition object to implement
a fill_halos() method. An implementation of periodic
boundary conditions in C++ is provided in the follow-
ing listing:

As hinted by the member field names, the fill_halos()
methods fill the left/right halo regions with data from
the right/left edges of the domain. Thanks to employ-
ment of the function pi() described in Section 2.4 the
same code may be applied in any dimension (the di-
mension being a template parameter).

The following listings contain the Python and For-
tran counterparts to listing C.17.

A.4. Donor-cell solver

As mentioned in the previous section, the donor-
cell formula constitutes an advection scheme, hence
we may use it to create a solver_donorcell implemen-
tation of the abstract solver class:

The above definition is given as an example only. In the
following sections, an MPDATA solver with the same
interface is defined.

The following listings contain the Python and For-
tran counterparts to listing C.18.

218 S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs

A.5. MPDATA solver

An MPDATA solver may be now constructed by in-
heriting from the solver class with the following defi-
nition in C++:

The array of sequences of temporary arrays tmp al-
located in the constructor is used to store the antidiffu-
sive velocities from the present and optionally previous
timestep (if using more than two iterations).

The advop() method controls the MPDATA itera-
tions within one timestep. The first (step = 0 iteration)
of MPDATA is an unmodified donor-cell step. Subse-
quent iterations begin with calculation of the antidiffu-
sive Courant fields using formula (5). In order to cal-
culate values spanning an (i − 1

2 , . . . , i + 1
2) range us-

ing a formula for C[i+1/2,...] only, the formula is eval-
uated using extended index ranges im and jm. In the
second (step = 1 iteration), the uncorrected Courant
field (C_unco) points to the original C field, and
the antidiffusive Courant field is written into C_corr
which points to tmp[1]. In the third (step = 2) iter-
ation C_unco points to tmp[1] while C_corr points
to tmp[0]. In subsequent iterations tmp[0] and tmp[1]
are alternately swapped.

The following listings contain the Python and For-
tran counterparts to listing C.19.

S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs 219

Appendix B. Usage example

The following listing provides an example of how
the MPDATA solver defined in Section A.5 may be
used together with the cyclic boundary conditions de-
fined in Section A.3. In the example, a Gaussian sig-
nal is advected in a 2D domain defined over a grid of
24 × 24 cells. The program first plots the initial con-
dition, then performs the integration for 75 timesteps
with three different settings of the number of iterations
used in MPDATA. The velocity field is constant in time
and space (although it is not assumed in the presented
implementations). The signal shape at the end of each
simulation is plotted as well. Plotting is done with the
help of the gnuplot-iostream library.25

The resultant plot is presented herein as Fig. 5. The
top panel depicts the initial condition. The three other
panels show a snapshot of the field after 75 timesteps.
The donor-cell solution is characterised by strongest
numerical diffusion resulting in significant drop in
the signal amplitude. The signals advected using
MPDATA show smaller numerical diffusion with the
solution obtained with more iterations preserving the
signal altitude more accurately. In all of the simula-
tions the signal maintains its positive definiteness. The
domain periodicity is apparent in the plots as the maxi-

25gnuplot-iostream is a header-only C++ library allowing gnu-
plot to be controlled from C++, see http://stahlke.org/dan/gnuplot-
iostream/. Gnuplot is a portable command-line driven graphing util-
ity, see http://gnuplot.info/.

220 S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs

Fig. 5. Plot generated by the program given in listing C.20. The top
panel shows initial signal shape (at time t = 0). The subsequent pan-
els show snapshots of the advected field after 75 timesteps from three
different simulations: donorcell (or 1 MPDATA iteration), MPDATA
with two iterations and MPDATA with 44 iterations. The colour scale
and the wire-frame surface correspond to signal amplitude. See Ap-
pendix B for discussion. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/SPR-140379.)

mum of the signal after 75 timesteps is located near the
domain walls.

S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs 221

The following listings contain the Python and For-
tran counterparts to listing C.20 (with the setup and
plotting logic omitted).

References

[1] B.J. Abiodun, W.J. Gutowski, A.A. Abatan and J.M. Prusa,
CAM-EULAG: A non-hydrostatic atmospheric climate model
with grid stretching, Acta Geophys. 59(6) (2011), 1158–1167.

[2] J.A. Añel, The importance of reviewing the code, Comm. ACM
54(5) (2011), 40–41.

[3] A. Arakawa and V.R. Lamb, Computational design of the basic
dynamical process of the UCLA general circulation model, in:
Methods in Computational Physics, Vol. 17, Academic Press,
New York, 1977, pp. 173–265.

[4] N. Barnes and D. Jones, Clear climate code: Rewriting legacy
science software for clarity, IEEE Software 28(6) (2011), 36–
42.

[5] C.F. Bolz, A. Cuni, M. Fijałkowski, M. Leuschel, S. Pedroni
and A. Rigo, Runtime feedback in a meta-tracing JIT for effi-
cient dynamic languages, in: ICOOOLPS’11: Proceedings of
the 6th Workshop on Implementation, Compilation, Optimiza-
tion of Object-Oriented Languages, Programs and Systems,
2011.

[6] F. Buschmann, To pay or not to pay technical debt, IEEE Soft-
ware 28(6) (2011), 29–31.

[7] J.R. Cary, S.G. Shasharina, J.C. Cummings, J.V.W. Reynders
and P.J. Hinker, Comparison of C++ and Fortran 90 for
object-oriented scientific programming, Comp. Phys. Comm.
105(1) (2011), 20–36.

[8] P. Charbonneau and P.K. Smolarkiewicz, Modeling the solar
dynamo, Science 340(6128) (2013), 42–43.

[9] B. Einarsson (ed.), Accuracy and Reliability in Scientific Com-
puting, SIAM, Philadelphia, PA, USA, 2005.

[10] T. Ezer, H. Arango and A.F. Shchepetkin, Developments in
terrain-following ocean models: intercomparisons of numeri-
cal aspects, Ocean Model. 4(3) (2002), 249–267.

[11] S.M. Freeman, T.L. Clune and R.W. Burns III, Latent risks and
dangers in the state of climate model software development, in:
Proceedings of the FSE/SDP Workshop on Future of Software
Engineering Research, ACM, 2010, pp. 111–114.

[12] S.M. Griffies, C. Boning, F.O. Bryan, E.P. Chassignet,
R. Gerdes, H. Hasumi, A. Hirst, A.-M. Treguier and D. Webb,
Developments in ocean climate modelling, Ocean Model.
2(3,4) (2000), 123–192.

[13] K. Iglberger, G. Hager, J. Treibig and U. Rüde, Expression
templates revisited: a performance analysis of current method-
ologies, SIAM J. Sci. Comput. 34(2) (2012), C42–C69.

[14] R. Kendall, J.C. Carver, D. Fisher, D. Henderson, A. Mark,
D. Post, C.E. Rhoades, Jr. and S. Squires, Development of a
weather forecasting code: A case study, IEEE Software 25(4)
(2008), 59–65.

[15] D.E. Knuth, Structured programming with go to statements,
Comput. Surv. 6(4) (1974), 261–301.

[16] S. Legutke, Building Earth system models, in: Earth System
Modelling – Volume 5: Tools for Configuring, Building and
Running Models, R. Ford, G. Riley, R. Budich and R. Redler,
eds, Springer, 2012, pp. 45–54.

[17] J.W.-B. Lin, Why python is the next wave in earth sciences
computing, Bull. Amer. Meteor. Soc. 93(12) (2012), 1823–
1824.

[18] A. Markus, Modern Fortran in Practice, Cambridge Univ.
Press, 2012.

[19] Z. Merali, Computational science: . . . Error. . . why scientific
programming does not compute, Nature 467 (2010), 775–777.

[20] C.D. Norton, V.K. Decyk, B.K. Szymanski and H. Gardner,
The transition and adoption to modern programming concepts
for scientific computing in Fortran, Sci. Prog. 15(1) (2007),
27–44.

[21] S. Paoli, C++ coding standard specification, Technical re-
port, CERN European Laboratory for Particle Physics, 2000,
available at: http://pst.web.cern.ch/PST/HandBookWorkBook/
Handbook/Programming/CodingStandard/c++standard.pdf.

[22] M. Pilgrim, Dive Into Python, Apress, 2004.
[23] D.E. Post and L.G. Votta, Computational science demands a

new paradigm, Phys. Today 58(1) (2005), 35–41.
[24] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery,

Numerical Recipes in Fortran 90. The Art of Parallel Scientific
Computing, 2nd edn, Cambridge Univ. Press, 1996.

[25] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery,
Numerical Recipes. The Art of Scientific Computing, 3rd edn,
Cambridge Univ. Press, 2007.

[26] D. Rouson, J. Xia and X. Xu, Scientific Software Design. The
Object-Oriented Way, Cambridge Univ. Press, 2012.

[27] P.K. Smolarkiewicz, A fully multidimensional positive defi-
nite advection transport algorithm with small implicit diffu-
sion, J. Comp. Phys. 54(2) (1984), 325–362.

[28] P.K. Smolarkiewicz, Multidimensional positive definite advec-
tion transport algorithm: an overview, Int. J. Numer. Meth. Flu-
ids 50(10) (2006), 1123–1144.

[29] R. Stallman et al., GNU General Public License, Free Software
Foundation, 2007, available at: http://gnu.org/licenses/gpl, ver-
sion 3.

[30] V. Stodden, I. Mitchell and R. LeVeque, Reproducible research
for scientific computing: Tools and strategies for changing the
culture, Comput. Sci. Eng. 14(4) (2012), 13–17.

[31] B. Stroustrup, The C++ Programming Language, 4th edn,
Addison Wesley, 2013.

[32] M. Sundberg, The everyday world of simulation modeling: The
development of parameterizations in meteorology, Sci. Tech-
nol. Hum. Val. 34(2) (2009), 162–181.

222 S. Arabas et al. / Formula translation in Blitz++, NumPy and modern Fortran: A case study of the language choice tradeoffs

[33] J.P.M. Syvitski, S.D. Peckham, O. David, J.L. Goodall,
C. Deluca and G. Theurich, Cyberinfrastructure and commu-
nity environmental modeling, in: Handbook of Environmental
Fluid Dynamics: Systems, Pollution, Modeling, and Measure-
ments, Vol. 2, H.J.S. Fernando, ed., CRC Press/Taylor & Fran-
cis Group, Boca Raton, FL, USA, 2013, pp. 399–410.

[34] T. Veldhuizen and M. Jernigan, Will C++ be faster than
Fortran?, in: Scientific Computing in Object-Oriented Par-
allel Environments, Y. Ishikawa, R. Oldehoeft, J. Reynders
and M. Tholburn, eds, Lecture Notes in Computer Science,
Vol. 1343, Springer, Berlin/Heidelberg, 1997, pp. 49–56.

[35] H.G. Weller, G. Tabor, H. Jasak and C. Fureby, A tensorial
approach to computational continuum mechanics using object-
oriented techniques, Comput. Phys. 12(6) (1998), 620–631.

[36] G. Wilson, Where’s the real bottleneck in scientific comput-
ing?, Am. Sci. 94(1) (2006), 5–6.

[37] G. Wilson, D.A. Aruliah, C. Titus Brown, N.P. Chue Hong,
M. Davis, R.T. Guy, S.H.D. Haddock, K. Huff, I.M. Mitchell,
M. Plumbley, B. Waugh, E.P. White and P. Wilson, Best
practices for scientific computing, PLoS Biol. 12(1) (2014),
e1001745.

[38] D.J. Worth, State of the art in object oriented programming
with Fortran, Technical Report RAL-TR-2008-002, Science
and Technology Facilities Council, 2008.

[39] M.Z. Ziemiański, M.J. Kurowski, Z.P. Piotrowski, B. Rosa and
O. Fuhrer, Toward very high horizontal resolution NWP over
the Alps: Influence of increasing model resolution on the flow
pattern, Acta Geophys. 59(6) (2011), 1205–1235.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

