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The meaning of probability (by examples) 
(1) A fair coin has a probability of 0.5 of heads, and likewise 0.5 of tails; so 

the probability of tossing two heads in a row is 0.25. 

(2) There is a 10% probability of rain tomorrow. 

(3) There is a 10% probability of rain tomorrow according to the weather 
forecast. 

(4) Fortunately there is only a 5% probability that her tumor is 
malignant, but this will not be known for certain until the surgery is 
done next week. 

(5) Smith has a greater probability of winning the election than does 
Jones. 

(6) I believe that there is a 75% probability that she will want to go out 
for dinner tonight. 

(7) I left my umbrella at home today because the forecast called for only a 
1% probability of rain. 

(8) Among 100 patients in a clinical trial given drug A, 83 recovered, 
whereas among 100 other patients given drug B, only 11 recovered; 
so new patients will have a higher probability of recovery if treated 
with drug A. 

Source of examples: Gauch (2003).  
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The utility of probability  
 Commonly, probability is regarded to be a branch of applied mathematics 

that provides tools for data analysis.  
 Nonetheless, probability is a more general concept that helps shape a 

consistent, realistic and powerful view of the world.  
 Historically, the modern science was initiated from deterministic views of 

the world, in which probability had a marginal role for peculiar 
unpredictable phenomena.  

 However, in the turn of the nineteenth century, radical developments in 
physics and mathematics has given the probability theory a central role in 
the scientific scene, in the understanding and the modelling of natural 
phenomena.  

 Furthermore, probability has provided grounds for philosophical concepts 
such as indeterminism and causality, as well as for extending the typical 
mathematical logic, offering the mathematical foundation of induction.  

 In typical scientific and technological applications, probability provides the 
tools to quantify uncertainty, rationalize decisions under uncertainty, and 
make predictions of future events under uncertainty, in lieu of 
unsuccessful deterministic predictions.  

 Uncertainty seems to be an intrinsic property of nature, as it can emerge 
even from pure and simple deterministic dynamics, and cannot been 
eliminated.  

See more details in Koutsoyiannis (2008).  
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Determinism and indeterminism 
 The philosophical proposition of determinism is widely accepted in science and is manifested in the idea 

of a clockwork universe. 

 It comes from the French philosopher and scientist René Descartes (1596-1650). 

 It was perfected by the French mathematician and astronomer Pierre-Simon Laplace (1749-1827). It 
is expressed in the metaphor of Laplace's demon, a hypothetical all-knowing entity that knows the 
precise location and momentum of every atom in the universe at present.  

 The idea encapsulated in the demon metaphor is that, knowing the present perfectly, one can deduce 
the future and the past using Newton’s laws. Thus, according to deterministic thinking, the roots of 
uncertainty about future are subjective, i.e. rely on the fact that we do not know exactly the present, 
or we do not have good enough methods and models. It is then a matter of time to eliminate 
uncertainty, acquiring better data (observations) and building better models.  

 Note though that Isaac Newton (1643-1727) rejected cartesian thinking and especially the 
clockwork idea; he was aware of the fragility the world and believed that God had to keep making 
adjustments all the time to correct the emerging chaos. 

 In indeterminism, a philosophical belief contradictory to determinism, uncertainty may be a structural 
element of nature and thus cannot be eliminated.  

 Indeterminism has its origin in the Greek philosophers Heraclitus (ca. 535–475 BC) and Epicurus 
(341–270 BC).  

 Its relationship with modern science was theorized by the Austrian-British philosopher Karl Popper 
(1902-1994). 

 In science, indeterminism largely relies on the notion of probability, which according to Popper is the 
extension (quantification) of the Aristotelian idea of potentia (dynamis). Practically, the idea is that 
several outcomes can be produced by a specified cause, while in deterministic thinking only one 
outcome is possible (but it may be difficult to predict which one). 
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Deduction and induction 
 In mathematical logic, determinism can be paralleled to the premise that all truth can be revealed by 

deductive reasoning or deduction (the Aristotelian apodeixis). This type of reasoning consists of repeated 
application of strong syllogisms such as: 

 If A is true, then B is true;    If A is true, then B is true; 

 A is true;    B is false; 

 Therefore, B is true.   Therefore, A is false. 

 Deduction uses a set of axioms to prove propositions known as theorems, which, given the axioms, are 
irrefutable, absolutely true statements. It is also irrefutable that deduction is the preferred route to truth; 
the question is, however, whether or not it has any limits.  

 David Hilbert (1862-1943) expressed his belief that there are no limits in his slogan (from his talk in 
1930; also inscribed in his tombstone at Göttingen): “Wir müssen wissen, wir werden wissen” (“We must 
know, we will know”). His idea, more formally known as completeness, is that any mathematical statement 
could be proved or disproved by deduction from axioms.  

 In everyday life, however, we use weaker syllogisms of the type: 

 If A is true, then B is true;   If A is true, then B is true; 

 B is true;    A is false; 

 Therefore, A becomes more plausible. Therefore, B becomes less plausible. 

 The latter type of syllogism is called induction (the Aristotelian epagoge). It does not offer a proof that a 
proposition is true or false and may lead to errors. However, it is very useful in decision making, when 
deduction is not possible.  

 An important achievement of probability is that it quantifies (expresses in the form of a number between 
0 and 1) the degree of plausibility of a certain proposition or statement. The formal probability 
framework uses both deduction, for proving theorems, and induction, for inference with incomplete 
information or data. 
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From the almighty determinism of the 19th century to 
the probabilistic world of the 20th century 
1. Statistical physics used the probabilistic concept of entropy (which is nothing other than a 

quantified measure of uncertainty defined within the probability theory) to explain 
fundamental physical laws (most notably the Second Law of Thermodynamics), thus leading 
to a new understanding of natural behaviours and to powerful predictions of macroscopic 
phenomena. 

2. Dynamical systems theory has shown that uncertainty can emerge even from pure, simple 
and fully known deterministic (chaotic) dynamics, and cannot be eliminated. 

3. Quantum theory has emphasized the intrinsic character of uncertainty and the necessity of 
probability in the description of nature.  

4. Developments in mathematical logic, and particularly Gödel’s incompleteness theorem, 
challenged the almightiness of deduction (inference by mathematical proof) thus paving the 
road to inductive inference.  

5. Developments in numerical mathematics highlighted the effectiveness of stochastic 
methods in solving even purely deterministic problems, such as numerical integration in 
high-dimensional spaces (where a Monte Carlo method is more accurate than a classical 
deterministic method, and thus preferable for numerical integration, in spaces with more 
than four dimensions) and global optimization of non-convex functions (where stochastic 
techniques, e.g. evolutionary algorithms or simulated annealing, are in effect the only 
feasible solution in complex problems that involve many local optima).  

6. Advances in evolutionary biology emphasize the importance of stochasticity (e.g. in 
selection and mutation procedures and in environmental changes) as a driver of evolution.  
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Definition of probability 
 According to Kolmogorov’s (1933) axiomatization, probability theory is based on 

three fundamental concepts and four axioms.  

 The concepts, i.e., the triplet (Ω, Σ, P) called probability space,  are:  

1. A non-empty set Ω, sometimes called the basic set, sample space or the certain 
event whose elements ω are known as outcomes or states. 

2. A set Σ known as σ-algebra or σ-field whose elements E are subsets of Ω, 
known as events. Ω and Ø are both members of Σ, and, in addition, (a) if E is in 
Σ then the complement Ω – E is in Σ; (b) the union of countably many sets in Σ 
is also in Σ.  

3. A function P called probability that maps events to real numbers, assigning 
each event E (member of Σ) a number between 0 and 1.  

 The four axioms, which define the properties of P, are: 

I. Non-negativity: For any event A, P(A) ≥ 0. 

II. Normalization: P(Ω) = 1.   

III. Additivity: For any events A, B with AB = Ø, P(A + B) = P(A) + P(B). 

IV. Continuity at zero: If A1  A2  …  An  … is a decreasing sequence of 
events, with A1A2…An… = Ø, then limn→∞P(An) = 0. 

[Note: In the case that Σ is finite, axiom IV follows from axioms I-III; in the 
general case, however, it should be put as an independent axiom.]  
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The concept of a random variable 

 A random variable x is a function that maps outcomes to numbers, i.e. quantifies 
the sample space Ω.  

 More formally, a real single-valued function x(ω), defined on the basic set Ω, is 
called a random variable if for each choice of a real number a the set {x < a} for all 
ω for which the inequality x(ω) < α holds true, belongs to Σ.  

 With the notion of the random variable we can conveniently express events using 
basic mathematics. In most cases this is done almost automatically. For instance a 
random variable x that takes values 1 to 6 is intuitively assumed when we deal 
with a die through.  

 We must be attentive that a random variable is not a number but a function. 
Intuitively, we could think of a random variable as an object that represents 
simultaneously all possible outcomes and only them.  

 A particular value that a random variable may take in a random experiment, else 
known as a realization of the variable, is a number.  

 We can denote a random variable by an underlined letter, e.g. x and its realization 
with a non-underlined letter x (another convention is to use an upper case letter, 
e.g. X, for the random variable and a lower case letter, e.g. x, for its realization. In 
any case, random variables and values thereof two should not be confused.  
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Probability distribution function 
 Distribution function is a function of the real variable x defined by 

 F (x) := P{x ≤ x} 

where x is a random variable.  

 The random variable with which this function is associated is not an argument of the function. If 
there risk of confusion (e.g. there are many random variables), the random variable is usually 
denoted as a subscript (e.g. Fx(x)). Typically F(x) has a mathematical expression depending on 
some parameters. The domain of F(x) is not identical to the range of the random variable x; rather 
it is always the set of real numbers.  

 The distribution function is a non-decreasing function obeying the relationship 

 0 = F(–∞) ≤ F(x) ≤ F(+∞) = 1 

 For its non-decreasing attitude, in the English literature the distribution function is also known as 
cumulative distribution function (cdf) – though “cumulative” is not necessary. In practical 
applications the distribution function is also known as non-exceedence probability. Likewise, the 
non-increasing function 

 𝐹(x) = P{x > x} = 1 – F(x)  

is known as exceedence probability (or survival function, survivor function, tail function).  

 The distribution function is always continuous on the right; however, if the basic set Ω is finite or 
countable, F(x) is discontinuous on the left at all points xi that correspond to outcomes ωi, and it is 
constant between them (staircase-like).  Such random variable is called discrete. If F(x) is a 
continuous function, then the random variable is called continuous. A mixed case is also possible; 
in this the distribution function has some discontinuities on the left, but is not staircase-like.  

 For continuous random variables, the inverse function  F–1( ) of F( ) exists. Consequently, the 
equation u = F(x) has a unique solution for x, called u-quantile of the variable x, that is:  

 xu = F–1(u) 
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Probability density (or mass) function 
 In continuous variables any particular value x has zero probability to occur. However, we 

can still tell which of two outcomes is more probable by examining the ratio of the two 
probabilities. As this is a 0/0 expression, having in mind l’Hôpital’s rule, we need to examine 
the ratio of derivatives of probabilities.  

 The derivative of the distribution function is called the probability density function: 

𝑓 𝑥 ≔
d𝐹 𝑥

d𝑥
 

 The basic properties of f (x) are 

  𝑓 𝑥 ≥ 0,   𝑓 𝑥 d𝑥 = 1 
∞

−∞
 

 Obviously, the probability density function does not represent a probability; therefore it can 
take values higher than 1. Its relationship with probability is described by the following 
equation:  

𝑓 𝑥 = lim
Δ𝑥→0

𝑃{𝑥 ≤ 𝑥 ≤ 𝑥 + Δ𝑥}

Δ𝑥
 

 The distribution function can be calculated from the density function by 

 𝐹(𝑥)= 𝑓 𝑦 d𝑦 
𝑥

−∞
 

 In discrete random variables, the density is a sequence of Dirac δ functions. It is thus more 
convenient to use the so-called probability mass function Pj ≡ P(xj) = P{x = xj}, j = 1,…,w, 
where w is the number of possible outcomes (which can be infinite). 
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Some common distributions 

Name Probability density function Distribution function 

Uniform in [0, 1] 𝑓(𝑥)  =   
1 for 0 ≤ 𝑥 ≤ 1
0 otherwise

 
  

F(x) = max(0, min(x, 1)) 

Exponential 𝑓(𝑥)  =   
e–x/μ 

/ μ for 𝑥 ≥ 0
0 for 𝑥 < 0

 
  𝐹(𝑥)  =   

1 − e–x/μ for 𝑥 ≥ 0
0 for 𝑥 < 0

 
  

Normal  
 𝑓 𝑥 =

1

2𝜋𝜎
exp −

𝑥 − 𝜇 2

2𝜎2  
𝐹 𝑥 = 

 
1

2𝜋𝜎
 exp −

𝑦 − 𝜇 2

2𝜎2
𝑑𝑦

𝑥

−∞
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Independent and dependent events, conditional 
probability 
 Two events A and B are called independent (or stochastically independent), if 

   𝑃 𝐴𝐵 = 𝑃 𝐴 𝑃(𝐵) 

 Otherwise A and B are called (stochastically) dependent.  

 The definition can be extended to many events. Thus, the events A1, A2, …, are independent if 
for any finite set of distinct indices i1, i2, …, in: 

 𝑃 𝐴𝑖1𝐴𝑖2 …𝐴𝑖𝑛 = 𝑃 𝐴𝑖1) 𝑃(𝐴𝑖2)…𝑃(𝐴𝑖𝑛   

 The handling of probabilities of independent events is thus easy. However, this is a special 
case because usually natural events are dependent. In the handling of dependent events the 
notion of conditional probability is vital. 

 By definition (Kolmogorov, 1933), conditional probability of the event A given B (i.e. under 
the condition that the event B has occurred) is the quotient  

 𝑃 𝐴 𝐵 ≔
𝑃 𝐴𝐵

𝑃 𝐵
  

 Obviously, if P(B) = 0, this conditional probability cannot be defined, while for independent 
A and B, P(A|B) = P (A). It follows that 

 𝑃 𝐴𝐵 = 𝑃 𝐴 𝐵 𝑃 𝐵 = 𝑃 𝐵 𝐴 𝑃(𝐴)  

 From this it follows the Bayes theorem: 

 𝑃 𝐵 𝐴 = 𝑃(𝐵)
𝑃 𝐴|𝐵

𝑃 𝐴
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Random number generation  
 Sequence of random numbers is a sequence of numbers xi whose every one statistical 

property is consistent with that of a sample from a sequence of independent identically 
distributed random variables xi (adapted from Papoulis, 1990).  

 Random number generator is a device (typically computer algorithm) which generates a 
sequence of random numbers xi with given distribution F(x). As most algorithms are purely 
deterministic, sometimes the numbers are called pseudorandom—but this in not necessary.  

 Random number generation  is also known as Monte Carlo sampling. 

 The basis of practically all random generators is the uniform distribution in [0,1]. A typical 
procedure is the following: 

 We generate a sequence of integers qi from the recursive algorithm 

  qi = (k qi - 1 + c) mod m  

 where k, c and m are appropriate integers (e.g. k = 69 069, c = 1, m = 232 = 4 294 967 296 
or k = 75 = 16 807, c = 0, m = 231 - 1 =  2 147 483 647; Ripley, 1987, p. 39). 

 We calculate the sequence of random numbers ui with uniform distribution in [0,1] by  

  ui = qi / m 

 A more recent and better algorithm is the so-called Mersenne twister 
(en.wikipedia.org/wiki/Mersenne_twister). It is available in most languages and software 
packages. For example, for Excel (which by default includes the function rand) the Mersenne 
twister algorithm, called NtRand, can be found in www.ntrand.com/download/. 

 A direct (but sometimes time demanding) algorithm to produce random numbers xi from 
any F(x) given  random numbers ui with uniform distribution in [0,1] is provided by: 

 xi = F–1(ui) 
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Exercise 1 

Let 𝑥 and 𝑦 represent the outcomes of each of two dice. What is 

the probability of the following cases? 

 𝑥 < 𝑦  

 𝑥 < 𝑦  

 𝑥 < 𝑦  

 𝑥 < 𝑦  

 

Verify the results by Monte Carlo simulations. 
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Exercise 2 
 Assume that in a certain place on earth and a certain period of the year a 

dry and a wet day are equiprobable and that in the different days the 
states (wet/dry) are independent. What is the probability that two 
consecutive days are wet under the following conditions? 

 Unconditionally. 

 If we know that the first day is wet. 

 If we know that the second day is wet. 

 If we know that one of the two days is wet. 

 If we know that one of the two days is dry. 

 Verify the results by Monte Carlo simulations. 

 Plot the distribution function of one day’s state (wet/dry) (after 
introducing an appropriate random variable). 

 Assuming that in a wet day the probability density function of the rainfall 
depth x (expressed in mm) is f(x|wet) = e–x, plot the probability 
distribution function F(x). 
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Exercise 3 
 Three engineers A, B and C are biding for a 1 000 000 € project and the evaluation 

committee in order to make the fairest possible selection, decided to throw a die. 
If the outcome is 1 or 2 the projects goes to A, if it is 3 or 4, then B wins and if it is 
5 or 6, then C wins. The dice is cast, but the announcement of the winner is going 
to be done the next day by the minister. 

 Engineer A approaches the chairman of the committee and offers him 1000 € to 
accept his following request: “I know you are not allowed to tell me who wins; 
however, two of the three will lose. Therefore, B or C or both will lose. Please tell 
me just one of these two will lose”. The committee member accepts and says that 
C will lose. Then engineer A offers another 1000 € to swap him with B.  

 Prove that the strategy of engineer A is consistent with awareness of probability.  

 Compare this strategy with another one, in which engineer A offers the same 
amount to convince  the chairman to re-decide on A and B by tossing a coin. 

 Verify your result with Monte Carlo simulation. 

 

Note: A different utterance of this problem is known as the “three prisoners problem” 
(http://en.wikipedia.org/wiki/Three_Prisoners_problem), which has puzzled many. For 
example, Ben-Naim, 2008, devotes several pages in his book about entropy (including a whole 
appendix) to solve this problem. However, its solution can be done in two lines. 
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Expectation 
 For a discrete random variable x, taking on the values x1, x2, …, xw (where w could 

be ∞) with probability mass function Pj ≡ P(xj) = P{x = xj}, if g(x) is an arbitrary 
function of x (so that g(x) is a random variable per se), we define the expectation 
or expected value or mean of g(x) as 

 E 𝑔 𝑥 ≔  𝑔 𝑥𝑗 𝑃(𝑥𝑗)
𝑤
𝑗=1  

 Likewise, for a continuous random variable x with density f(x), the expectation is 

 E 𝑔 𝑥 ≔  𝑔 𝑥 𝑓 𝑥 d𝑥
∞

−∞
    

 For certain types of functions g(x) we get very commonly used statistical 
parameters, as specified below: 

1. For g(x) = xr, where r = 0, 1, 2, …, the quantity μr := Ε[xr ] is called the rth 
moment (or the rth moment about the origin) of x. For r = 0, obviously the 
moment is 1.  

2. For g(x) = x, the quantity μ := μ1 =Ε[x](that is, the first moment) is called the 
mean of x.  

3. For g(x) = (x – μ)r  where r = 0, 1, 2, …, the quantity mr := Ε[(x – μ)r] is called 
the rth central moment of  x. For r = 0 and 1 the central moments are 
respectively 1 and 0. For  

4. For g(x) = (x – μ)2 the quantity σ2 := m2 = Ε[(x – μ)2] is called the variance of  x 
(also denoted as var[x]); its square root σ (also denoted as std[x] is called the 
standard deviation of x. 
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Entropy 
 For a discrete random variable x, taking on the values x1, x2, …, xw (where w could be ∞) 

with probability mass function Pj ≡ P(xj) = P{x = xj}, the entropy is defined as the expectation 
of the minus logarithm of probability (Shannon, 195?), i.e.: 

 Φ[z] := E[–ln P(z)] = – P
j
ln P

j

w
j = 1  

 Extension of the above definition for the case of a continuous random variable x with 
probability density function f(x), is possible, although not contained in Shannon’s (1948) 
original work. This extension involves a (so-called) ‘background measure’ with density h(x), 
which can be any probability density, proper (with integral equal to 1) or improper 
(meaning that its integral does not converge); typically it is an (improper) Lebesgue density, 
i.e. a constant with dimensions [h(x)] = [f(x)] = [x–1], so that the argument of the logarithm 
function that follows be dimensionless. Thus, the entropy of a continuous variable x is (see 
e.g. Jaynes, 2003, p. 375): 

 Φ[x] :=E – ln
f x
h x

 = –  ln
f x
h x

f x dx
∞
−∞  

 It is easily seen that for both discrete and continuous variables the entropy Φ[z] is a 
dimensionless quantity.  

 The importance of the entropy concepts relies in the principle of maximum entropy 
(Jaynes, 1957); it postulates that the entropy of a random variable z should be at maximum, 
under some conditions, formulated as constraints, which incorporate the information that is 
given about this variable. 

 This principle can be used for logical inference as well as for modelling physical systems; 
for example, the tendency of entropy to become maximal (Second Law of thermodynamics) 
can result from this principle.  
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Exercise 4 

 Find the mean, variance and entropy of the variable x 
representing the outcome of a fair die. Show that the entropy 
of a fair die is greater than in any loaded die.  

 Find the mean, variance and entropy of a variable x with 
uniform distribution in [0,1]. Show that this entropy is the 
maximum possible among all distributions in [0,1]. 

 Find the mean, variance and entropy of a variable x with 
exponential distribution. Show that this entropy is the 
maximum possible among all distributions in [0,∞) which 
have specified mean. 

 Find the mean, variance and entropy of a variable x with 
normal distribution. Show that this entropy is the maximum 
possible among all distributions in (–∞,∞) which have 
specified mean and variance. 
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